We propose, analyze and implement a virtual element discretization for an interfacial poroelasticity-elasticity consolidation problem. The formulation of the time-dependent poroelasticity equations uses displacement, fluid pressure, and total pressure, and the elasticity equations are written in the displacement-pressure formulation. The construction of the virtual element scheme does not require Lagrange multipliers to impose the transmission conditions (continuity of displacement and total traction, and no-flux for the fluid) on the interface. We show the stability and convergence of the virtual element method for different polynomial degrees, and the error bounds are robust with respect to delicate model parameters (such as Lame constants, permeability, and storativity coefficient). Finally, we provide numerical examples that illustrate the properties of the scheme.
In this paper, we present an error estimate of a second-order linearized finite element (FE) method for the 2D Navier-Stokes equations with variable density. In order to get error estimates, we first introduce an equivalent form of the original system. Later, we propose a general BDF2-FE method for solving this equivalent form, where the Taylor-Hood FE space is used for discretizing the Navier-Stokes equations and conforming FE space is used for discretizing density equation. We show that our scheme ensures discrete energy dissipation. Under the assumption of sufficient smoothness of strong solutions, an error estimate is presented for our numerical scheme for variable density incompressible flow in two dimensions. Finally, some numerical examples are provided to confirm our theoretical results.
Recently developed reduced-order modeling techniques aim to approximate nonlinear dynamical systems on low-dimensional manifolds learned from data. This is an effective approach for modeling dynamics in a post-transient regime where the effects of initial conditions and other disturbances have decayed. However, modeling transient dynamics near an underlying manifold, as needed for real-time control and forecasting applications, is complicated by the effects of fast dynamics and nonnormal sensitivity mechanisms. To begin to address these issues, we introduce a parametric class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data. Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder. We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality. To demonstrate these methods and the specific challenges they address, we provide a detailed case study of a three-state model of vortex shedding in the wake of a bluff body immersed in a fluid, which has a two-dimensional slow manifold that can be computed analytically. In anticipation of future applications to high-dimensional systems, we also propose several techniques for constructing computationally efficient reduced-order models using our proposed nonlinear projection framework. This includes a novel sparsity-promoting penalty for the encoder that avoids detrimental weight matrix shrinkage via computation on the Grassmann manifold.
The Gromov--Hausdorff distance measures the difference in shape between compact metric spaces and poses a notoriously difficult problem in combinatorial optimization. We introduce its quadratic relaxation over a convex polytope whose solutions provably deliver the Gromov--Hausdorff distance. The optimality guarantee is enabled by the fact that the search space of our approach is not constrained to a generalization of bijections, unlike in other relaxations such as the Gromov--Wasserstein distance. We suggest the Frank--Wolfe algorithm for solving the relaxation in $O(n^3)$ time per iteration, and numerically demonstrate its performance on metric spaces of hundreds of points. In particular, we use it to obtain a new bound of the Gromov--Hausdorff distance between the unit circle and the unit hemisphere equipped with Euclidean metric. Our approach is implemented as a Python package dGH.
Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
The virtual element method was introduced 10 years ago and it has generated a large number of theoretical results and applications ever since. Here, we overview the main mathematical results concerning the stabilization term of the method as an introduction for newcomers in the field. In particular, we summarize the proofs of some results for two dimensional ``nodal'' conforming and nonconforming virtual element spaces to pinpoint the essential tools used in the stability analysis. We discuss their extensions to several other virtual elements. Finally, we show several ways to prove interpolation estimates, including a recent one that is based on employing the stability bounds.
In this paper, we consider intelligent reflecting surface (IRS) in a non-orthogonal multiple access (NOMA)-aided Integrated Sensing and Multicast-Unicast Communication (ISMUC) system, where the multicast signal is used for sensing and communications while the unicast signal is used only for communications. Our goal is to depict whether the IRS improves the performance of NOMA-ISMUC system or not under the imperfect/perfect successive interference cancellation (SIC) scenario. Towards this end, we formulate a non-convex problem to maximize the unicast rate while ensuring the minimum target illumination power and multicast rate. To settle this problem, we employ the Dinkelbach method to transform this original problem into an equivalent one, which is then solved via alternating optimization algorithm and semidefinite relaxation (SDR) with Sequential Rank-One Constraint Relaxation (SROCR). Based on this, an iterative algorithm is devised to obtain a near-optimal solution. Computer simulations verify the quick convergence of the devised iterative algorithm, and provide insightful results. Compared to NOMA-ISMUC without IRS, IRS-aided NOMA-ISMUC achieves a higher rate with perfect SIC but keeps the almost same rate in the case of imperfect SIC.
According to ICH Q8 guidelines, the biopharmaceutical manufacturer submits a design space (DS) definition as part of the regulatory approval application, in which case process parameter (PP) deviations within this space are not considered a change and do not trigger a regulatory post approval procedure. A DS can be described by non-linear PP ranges, i.e., the range of one PP conditioned on specific values of another. However, independent PP ranges (linear combinations) are often preferred in biopharmaceutical manufacturing due to their operation simplicity. While some statistical software supports the calculation of a DS comprised of linear combinations, such methods are generally based on discretizing the parameter space - an approach that scales poorly as the number of PPs increases. Here, we introduce a novel method for finding linear PP combinations using a numeric optimizer to calculate the largest design space within the parameter space that results in critical quality attribute (CQA) boundaries within acceptance criteria, predicted by a regression model. A precomputed approximation of tolerance intervals is used in inequality constraints to facilitate fast evaluations of this boundary using a single matrix multiplication. Correctness of the method was validated against different ground truths with known design spaces. Compared to stateof-the-art, grid-based approaches, the optimizer-based procedure is more accurate, generally yields a larger DS and enables the calculation in higher dimensions. Furthermore, a proposed weighting scheme can be used to favor certain PPs over others and therefore enabling a more dynamic approach to DS definition and exploration. The increased PP ranges of the larger DS provide greater operational flexibility for biopharmaceutical manufacturers.
We consider estimation of parameters defined as linear functionals of solutions to linear inverse problems. Any such parameter admits a doubly robust representation that depends on the solution to a dual linear inverse problem, where the dual solution can be thought as a generalization of the inverse propensity function. We provide the first source condition double robust inference method that ensures asymptotic normality around the parameter of interest as long as either the primal or the dual inverse problem is sufficiently well-posed, without knowledge of which inverse problem is the more well-posed one. Our result is enabled by novel guarantees for iterated Tikhonov regularized adversarial estimators for linear inverse problems, over general hypothesis spaces, which are developments of independent interest.
Flexural wave scattering plays a crucial role in optimizing and designing structures for various engineering applications. Mathematically, the flexural wave scattering problem on an infinite thin plate is described by a fourth-order plate-wave equation on an unbounded domain, making it challenging to solve directly using the regular linear finite element method (FEM). In this paper, we propose two numerical methods, the interior penalty FEM (IP-FEM) and the boundary penalty FEM (BP-FEM) with a transparent boundary condition (TBC), to study flexural wave scattering by an arbitrary-shaped cavity on an infinite thin plate. Both methods decompose the fourth-order plate-wave equation into the Helmholtz and modified Helmholtz equations with coupled conditions at the cavity boundary. A TBC is then constructed based on the analytical solutions of the Helmholtz and modified Helmholtz equations in the exterior domain, effectively truncating the unbounded domain into a bounded one. Using linear triangular elements, the IP-FEM and BP-FEM successfully suppress the oscillation of the bending moment of the solution at the cavity boundary, demonstrating superior stability and accuracy compared to the regular linear FEM when applied to this problem.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.