亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current 3D reconstruction techniques struggle to infer unbounded scenes from a few images faithfully. Specifically, existing methods have high computational demands, require detailed pose information, and cannot reconstruct occluded regions reliably. We introduce 6Img-to-3D, an efficient, scalable transformer-based encoder-renderer method for single-shot image to 3D reconstruction. Our method outputs a 3D-consistent parameterized triplane from only six outward-facing input images for large-scale, unbounded outdoor driving scenarios. We take a step towards resolving existing shortcomings by combining contracted custom cross- and self-attention mechanisms for triplane parameterization, differentiable volume rendering, scene contraction, and image feature projection. We showcase that six surround-view vehicle images from a single timestamp without global pose information are enough to reconstruct 360$^{\circ}$ scenes during inference time, taking 395 ms. Our method allows, for example, rendering third-person images and birds-eye views. Our code is available at //github.com/continental/6Img-to-3D, and more examples can be found at our website here //6Img-to-3D.GitHub.io/.

相關內容

 超文本傳輸安全協議是超文本傳輸協議和 SSL/TLS 的組合,用以提供加密通訊及對網絡服務器身份的鑒定。

Generating 3D visual scenes is at the forefront of visual generative AI, but current 3D generation techniques struggle with generating scenes with multiple high-resolution objects. Here we introduce Lay-A-Scene, which solves the task of Open-set 3D Object Arrangement, effectively arranging unseen objects. Given a set of 3D objects, the task is to find a plausible arrangement of these objects in a scene. We address this task by leveraging pre-trained text-to-image models. We personalize the model and explain how to generate images of a scene that contains multiple predefined objects without neglecting any of them. Then, we describe how to infer the 3D poses and arrangement of objects from a 2D generated image by finding a consistent projection of objects onto the 2D scene. We evaluate the quality of Lay-A-Scene using 3D objects from Objaverse and human raters and find that it often generates coherent and feasible 3D object arrangements.

AI-generated faces have enriched human life, such as entertainment, education, and art. However, they also pose misuse risks. Therefore, detecting AI-generated faces becomes crucial, yet current detectors show biased performance across different demographic groups. Mitigating biases can be done by designing algorithmic fairness methods, which usually require demographically annotated face datasets for model training. However, no existing dataset comprehensively encompasses both demographic attributes and diverse generative methods, which hinders the development of fair detectors for AI-generated faces. In this work, we introduce the AI-Face dataset, the first million-scale demographically annotated AI-generated face image dataset, including real faces, faces from deepfake videos, and faces generated by Generative Adversarial Networks and Diffusion Models. Based on this dataset, we conduct the first comprehensive fairness benchmark to assess various AI face detectors and provide valuable insights and findings to promote the future fair design of AI face detectors. Our AI-Face dataset and benchmark code are publicly available at //github.com/Purdue-M2/AI-Face-FairnessBench.

Conventional Knowledge graph completion (KGC) methods aim to infer missing information in incomplete Knowledge Graphs (KGs) by leveraging existing information, which struggle to perform effectively in scenarios involving emerging entities. Inductive KGC methods can handle the emerging entities and relations in KGs, offering greater dynamic adaptability. While existing inductive KGC methods have achieved some success, they also face challenges, such as susceptibility to noisy structural information during reasoning and difficulty in capturing long-range dependencies in reasoning paths. To address these challenges, this paper proposes the Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) framework, which simultaneously captures both the structural and semantic information of KGs to enhance the inductive KGC task. Specifically, the proposed QASPR employs a query-dependent masking module to adaptively mask noisy structural information while retaining important information closely related to the targets. Additionally, QASPR introduces a global semantic scoring module that evaluates both the individual contributions and the collective impact of nodes along the reasoning path within KGs. The experimental results demonstrate that QASPR achieves state-of-the-art performance.

The increasing difficulty in accurately detecting forged images generated by AIGC(Artificial Intelligence Generative Content) poses many risks, necessitating the development of effective methods to identify and further locate forged areas. In this paper, to facilitate research efforts, we construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model. Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization. Specifically, it relies on a dual-attention mechanism to adaptively fuse multi-modal image features in depth, followed by a multi-branch interaction network to thoroughly interact image features at different scales and improve detector performance by leveraging dependencies between layers. Additionally, we extract more sensitive noise fingerprints to obtain more prominent forged artifact features in the forged areas. Extensive experiments validate the effectiveness of our approach, demonstrating significant performance improvements compared to state-of-the-art methods for forged image detection and localization.The code and dataset will be released in the future.

Graph Collaborative Filtering (GCF) has achieved state-of-the-art performance for recommendation tasks. However, most GCF structures simplify the feature transformation and nonlinear operation during message passing in the graph convolution network (GCN). We revisit these two components and discover that a part of feature transformation and nonlinear operation during message passing in GCN can improve the representation of GCF, but increase the difficulty of training. In this work, we propose a simple and effective graph-based recommendation model called FourierKAN-GCF. Specifically, it utilizes a novel Fourier Kolmogorov-Arnold Network (KAN) to replace the multilayer perceptron (MLP) as a part of the feature transformation during message passing in GCN, which improves the representation power of GCF and is easy to train. We further employ message dropout and node dropout strategies to improve the representation power and robustness of the model. Extensive experiments on two public datasets demonstrate the superiority of FourierKAN-GCF over most state-of-the-art methods. The implementation code is available at //github.com/Jinfeng-Xu/FKAN-GCF.

We present Generative Interpretable Fine-Tuning (GIFT) for parameter-efficient fine-tuning of pretrained Transformer backbones, which can be formulated as a simple factorized matrix multiplication in the parameter space or equivalently in the activation space, and thus embraces built-in interpretability. For a pretrained layer with weights $\omega\in \mathbb{R}^{d_{out}\times d_{in}}$, our proposed GIFT learns the fine-tuned weights $\hat{\omega}$ directly from $\omega$ as $\hat{\omega}=\omega \cdot (\mathbb{I}+\phi_{d_{in}\times r}\cdot \psi_{r\times d_{in}})$ where $\mathbb{I}$ is an identity matrix. $\Theta=(\phi, \psi)$ are the learnable parameters of the two linear layers of GIFT with $r$ being a hyper-parameter. $\Theta$ is shared by all the layers selected for fine-tuning, resulting in significantly fewer trainable parameters compared to Low-Rank Adaptation (LoRA). We perform comprehensive evaluations on natural language tasks (commonsense reasoning and sequence classification) and computer vision tasks (visual fine-grained classification). We obtain the best accuracy and parameter efficiency among baselines both on the Commonsense170k reasoning benchmark using LLaMA-1 (7B) and Llama-2 (7B)/-3 (8B) and on the FGVC and VTAB visual recognition benchmarks using ImageNet-21k pretrained Vision Transformer (ViT-B/16). Notably, we obtain 5.9% absolute increase in average accuracy with 53.8 times reduction of parameters on Commonsense170k using Llama-3 (8B) compared to LoRA. We obtain performance comparable to LoRA on the GLUE benchmark but with significantly fewer parameters using RoBERTa-Base/Large. We show the output of the first linear layer (i.e., $\omega\cdot \phi$) is surprisingly interpretable, which can play the role of a token-clustering head as a by-product to localize meaningful objects/parts in images for computer vision tasks. Our code is publicly available.

Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.

Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as similar 2D projections can correspond to multiple 3D interpretations. Nevertheless, most HMR methods overlook this ambiguity and make a single prediction without accounting for the associated uncertainty. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. MEGA enables us to propose multiple outputs and to evaluate the uncertainty of the predictions. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.

Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to explain the predictions made by GNNs. Existing explanation methods mainly focus on post-hoc explanations where another explanatory model is employed to provide explanations for a trained GNN. The fact that post-hoc methods fail to reveal the original reasoning process of GNNs raises the need of building GNNs with built-in interpretability. In this work, we propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs and provides a new perspective on the explanations of GNNs. In ProtGNN, the explanations are naturally derived from the case-based reasoning process and are actually used during classification. The prediction of ProtGNN is obtained by comparing the inputs to a few learned prototypes in the latent space. Furthermore, for better interpretability and higher efficiency, a novel conditional subgraph sampling module is incorporated to indicate which part of the input graph is most similar to each prototype in ProtGNN+. Finally, we evaluate our method on a wide range of datasets and perform concrete case studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.

We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.

北京阿比特科技有限公司