The optimal error estimate that depending only on the polynomial degree of $ \varepsilon^{-1}$ is established for the temporal semi-discrete scheme of the Cahn-Hilliard equation, which is based on the scalar auxiliary variable (SAV) formulation. The key to our analysis is to convert the structure of the SAV time-stepping scheme back to a form compatible with the original format of the Cahn-Hilliard equation, which makes it feasible to use spectral estimates to handle the nonlinear term. Based on the transformation of the SAV numerical scheme, the optimal error estimate for the temporal semi-discrete scheme which depends only on the low polynomial order of $\varepsilon^{-1}$ instead of the exponential order, is derived by using mathematical induction, spectral arguments, and the superconvergence properties of some nonlinear terms. Numerical examples are provided to illustrate the discrete energy decay property and validate our theoretical convergence analysis.
We consider the setting of online convex optimization (OCO) with \textit{exp-concave} losses. The best regret bound known for this setting is $O(n\log{}T)$, where $n$ is the dimension and $T$ is the number of prediction rounds (treating all other quantities as constants and assuming $T$ is sufficiently large), and is attainable via the well-known Online Newton Step algorithm (ONS). However, ONS requires on each iteration to compute a projection (according to some matrix-induced norm) onto the feasible convex set, which is often computationally prohibitive in high-dimensional settings and when the feasible set admits a non-trivial structure. In this work we consider projection-free online algorithms for exp-concave and smooth losses, where by projection-free we refer to algorithms that rely only on the availability of a linear optimization oracle (LOO) for the feasible set, which in many applications of interest admits much more efficient implementations than a projection oracle. We present an LOO-based ONS-style algorithm, which using overall $O(T)$ calls to a LOO, guarantees in worst case regret bounded by $\widetilde{O}(n^{2/3}T^{2/3})$ (ignoring all quantities except for $n,T$). However, our algorithm is most interesting in an important and plausible low-dimensional data scenario: if the gradients (approximately) span a subspace of dimension at most $\rho$, $\rho << n$, the regret bound improves to $\widetilde{O}(\rho^{2/3}T^{2/3})$, and by applying standard deterministic sketching techniques, both the space and average additional per-iteration runtime requirements are only $O(\rho{}n)$ (instead of $O(n^2)$). This improves upon recently proposed LOO-based algorithms for OCO which, while having the same state-of-the-art dependence on the horizon $T$, suffer from regret/oracle complexity that scales with $\sqrt{n}$ or worse.
Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}(\min\{\log (\sigma_{1:T}^2+\Sigma_{1:T}^2), (\sigma_{\max}^2 + \Sigma_{\max}^2) \log T\})$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ bound. For \mbox{exp-concave} and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we can further extend our result to obtain dynamic regret guarantees, which are more favorable in non-stationary online scenarios. The attained results allow us to recover excess risk bounds of the stochastic setting and regret bounds of the adversarial setting, and derive new guarantees for many intermediate scenarios.
We propose in this paper efficient first/second-order time-stepping schemes for the evolutional Navier-Stokes-Nernst-Planck-Poisson equations. The proposed schemes are constructed using an auxiliary variable reformulation and sophisticated treatment of the terms coupling different equations. By introducing a dynamic equation for the auxiliary variable and reformulating the original equations into an equivalent system, we construct first- and second-order semi-implicit linearized schemes for the underlying problem. The main advantages of the proposed method are: (1) the schemes are unconditionally stable in the sense that a discrete energy keeps decay during the time stepping; (2) the concentration components of the discrete solution preserve positivity and mass conservation; (3) the delicate implementation shows that the proposed schemes can be very efficiently realized, with computational complexity close to a semi-implicit scheme. Some numerical examples are presented to demonstrate the accuracy and performance of the proposed method. As far as the best we know, this is the first second-order method which satisfies all the above properties for the Navier-Stokes-Nernst-Planck-Poisson equations.
We address the weak numerical solution of stochastic differential equations driven by independent Brownian motions (SDEs for short). This paper develops a new methodology to design adaptive strategies for determining automatically the step-sizes of the numerical schemes that compute the mean values of smooth functions of the solutions of SDEs. First, we introduce a general method for constructing variable step-size weak schemes for SDEs, which is based on controlling the match between the first conditional moments of the increments of the numerical integrator and the ones corresponding to an additional weak approximation. To this end, we use certain local discrepancy functions that do not involve sampling random variables. Precise directions for designing suitable discrepancy functions and for selecting starting step-sizes are given. Second, we introduce a variable step-size Euler scheme, together with a variable step-size second order weak scheme via extrapolation. Finally, numerical simulations are presented to show the potential of the introduced variable step-size strategy and the adaptive scheme to overcome known instability problems of the conventional fixed step-size schemes in the computation of diffusion functional expectations.
In day-ahead electricity markets based on uniform marginal pricing, small variations in the offering and bidding curves may substantially modify the resulting market outcomes. In this work, we deal with the problem of finding the optimal offering curve for a risk-averse profit-maximizing generating company (GENCO) in a data-driven context. In particular, a large GENCO's market share may imply that her offering strategy can alter the marginal price formation, which can be used to increase profit. We tackle this problem from a novel perspective. First, we propose a optimization-based methodology to summarize each GENCO's step-wise supply curves into a subset of representative price-energy blocks. Then, the relationship between the market price and the resulting energy block offering prices is modeled through a Bayesian linear regression approach, which also allows us to generate stochastic scenarios for the sensibility of the market towards the GENCO strategy, represented by the regression coefficient probabilistic distributions. Finally, this predictive model is embedded in the stochastic optimization model by employing a constraint learning approach. Results show how allowing the GENCO to deviate from her true marginal costs renders significant changes in her profits and the market marginal price. Furthermore, these results have also been tested in an out-of-sample validation setting, showing how this optimal offering strategy is also effective in a real-world market contest.
Full Waveform Inversion (FWI) is a large-scale nonlinear ill-posed problem for which implementation of the Newton-type methods is computationally expensive. Moreover, these methods can trap in undesirable local minima when the starting model lacks low-wavenumber part and the recorded data lack low-frequency content. In this paper, the Gauss-Newton (GN) method is modified to address these issues. We rewrite the GN system for multisoure multireceiver FWI in an equivalent matrix equation form whose solution is a diagonal matrix, instead of a vector in the standard system. Then we relax the diagonality constraint, lifting the search direction from a vector to a matrix. This relaxation is equivalent to introducing an extra degree of freedom in the subsurface offset axis for the search direction. Furthermore, it makes the Hessian matrix separable and easy to invert. The relaxed system is solved explicitly for computing the desired search direction, requiring only inversion of two small matrices that deblur the data residual matrix along the source and receiver dimensions. Application of the Extended GN (EGN) method to solve the extended-source FWI leads to an algorithm that has the advantages of both model extension and source extension. Numerical examples are presented showing robustness and stability of EGN algorithm for waveform inversion.
This paper studies covariate adjusted estimation of the average treatment effect (ATE) in stratified experiments. We work in the stratified randomization framework of Cytrynbaum (2021), which includes matched tuples designs (e.g. matched pairs), coarse stratification, and complete randomization as special cases. Interestingly, we show that the Lin (2013) interacted regression is generically asymptotically inefficient, with efficiency only in the edge case of complete randomization. Motivated by this finding, we derive the optimal linear covariate adjustment for a given stratified design, constructing several new estimators that achieve the minimal variance. Conceptually, we show that optimal linear adjustment of a stratified design is equivalent in large samples to doubly-robust semiparametric adjustment of an independent design. We also develop novel asymptotically exact inference for the ATE over a general family of adjusted estimators, showing in simulations that the usual Eicker-Huber-White confidence intervals can significantly overcover. Our inference methods produce shorter confidence intervals by fully accounting for the precision gains from both covariate adjustment and stratified randomization. Simulation experiments and an empirical application to the Oregon Health Insurance Experiment data (Finkelstein et al. (2012)) demonstrate the value of our proposed methods.
We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.
Federated learning methods, that is, methods that perform model training using data situated across different sources, whilst simultaneously not having the data leave their original source, are of increasing interest in a number of fields. However, despite this interest, the classes of models for which easily-applicable and sufficiently general approaches are available is limited, excluding many structured probabilistic models. We present a general yet elegant resolution to the aforementioned issue. The approach is based on adopting structured variational inference, an approach widely used in Bayesian machine learning, to the federated setting. Additionally, a communication-efficient variant analogous to the canonical FedAvg algorithm is explored. The effectiveness of the proposed algorithms are demonstrated, and their performance is compared on Bayesian multinomial regression, topic modelling, and mixed model examples.
It is well-known that for sparse linear bandits, when ignoring the dependency on sparsity which is much smaller than the ambient dimension, the worst-case minimax regret is $\widetilde{\Theta}\left(\sqrt{dT}\right)$ where $d$ is the ambient dimension and $T$ is the number of rounds. On the other hand, in the benign setting where there is no noise and the action set is the unit sphere, one can use divide-and-conquer to achieve $\widetilde{\mathcal O}(1)$ regret, which is (nearly) independent of $d$ and $T$. In this paper, we present the first variance-aware regret guarantee for sparse linear bandits: $\widetilde{\mathcal O}\left(\sqrt{d\sum_{t=1}^T \sigma_t^2} + 1\right)$, where $\sigma_t^2$ is the variance of the noise at the $t$-th round. This bound naturally interpolates the regret bounds for the worst-case constant-variance regime (i.e., $\sigma_t \equiv \Omega(1)$) and the benign deterministic regimes (i.e., $\sigma_t \equiv 0$). To achieve this variance-aware regret guarantee, we develop a general framework that converts any variance-aware linear bandit algorithm to a variance-aware algorithm for sparse linear bandits in a "black-box" manner. Specifically, we take two recent algorithms as black boxes to illustrate that the claimed bounds indeed hold, where the first algorithm can handle unknown-variance cases and the second one is more efficient.