The accurate representation and prediction of physical phenomena through numerical computer codes remains to be a vast and intricate interdisciplinary topic of research. Especially within the last decades, there has been a considerable push toward high performance numerical schemes to solve partial differential equations (PDEs) from the applied mathematics and numerics community. The resulting landscape of choices regarding numerical schemes for a given system of PDEs can thus easily appear daunting for an application expert that is familiar with the relevant physics, but not necessarily with the numerics. Bespoke high performance schemes in particular pose a substantial hurdle for domain scientists regarding their theory and implementation. Here, we propose a unifying scheme for grid based approximation methods to address this issue. We introduce some well defined restrictions to systematically guide an application expert through the process of classifying a given multiphysics problem, identifying suitable numerical schemes and implementing them. We introduce a fixed set of input parameters, amongst them for example the governing equations and the hardware configuration. This method not only helps to identify and assemble suitable schemes, but enables the unique combination of multiple methods on a per field basis. We exemplarily demonstrate this process and its effectiveness using different approaches and systematically show how one should exploit some given properties of a PDE problem to arrive at an efficient compound discretisation.
Probabilistic principal component analysis (PPCA) is currently one of the most used statistical tools to reduce the ambient dimension of the data. From multidimensional scaling to the imputation of missing data, PPCA has a broad spectrum of applications ranging from science and engineering to quantitative finance. Despite this wide applicability in various fields, hardly any theoretical guarantees exist to justify the soundness of the maximal likelihood (ML) solution for this model. In fact, it is well known that the maximum likelihood estimation (MLE) can only recover the true model parameters up to a rotation. The main obstruction is posed by the inherent identifiability nature of the PPCA model resulting from the rotational symmetry of the parameterization. To resolve this ambiguity, we propose a novel approach using quotient topological spaces and in particular, we show that the maximum likelihood solution is consistent in an appropriate quotient Euclidean space. Furthermore, our consistency results encompass a more general class of estimators beyond the MLE. Strong consistency of the ML estimate and consequently strong covariance estimation of the PPCA model have also been established under a compactness assumption.
The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS) to maximize the received power at a user equipment is addressed. Necessary and sufficient conditions to achieve this maximization are given. These conditions are employed in an algorithm to achieve the maximization. New versions of the algorithm are given that are proven to achieve convergence in N or fewer steps whether the direct link is completely blocked or not, where N is the number of the RIS elements, whereas previously published results achieve this in KN or 2N number of steps where K is the number of discrete phases, e.g., [1], [2]. Thus, for a discrete-phase RIS, the techniques presented in this paper achieve the optimum received power in the smallest number of steps published in the literature. In addition, in each of those N steps, the techniques presented in this paper determine only one or a small number of phase shifts with a simple elementwise update rule, which result in a substantial reduction of computation time, as compared to the algorithms in the literature, e.g., [2], [3].
We propose a geometric approach for the numerical integration of singular initial value problems for (systems of) quasi-linear differential equations. It transforms the original problem into the problem of computing the unstable manifold at a stationary point of an associated vector field and thus into one which can be solved in an efficient and robust manner. Using the shooting method, our approach also works well for boundary value problems. As examples, we treat some (generalised) Lane-Emden equations and the Thomas-Fermi equation.
Differentiable Filters, as recursive Bayesian estimators, possess the ability to learn complex dynamics by deriving state transition and measurement models exclusively from data. This data-driven approach eliminates the reliance on explicit analytical models while maintaining the essential algorithmic components of the filtering process. However, the gain mechanism remains non-differentiable, limiting its adaptability to specific task requirements and contextual variations. To address this limitation, this paper introduces an innovative approach called {\alpha}-MDF (Attention-based Multimodal Differentiable Filter). {\alpha}-MDF leverages modern attention mechanisms to learn multimodal latent representations for accurate state estimation in soft robots. By incorporating attention mechanisms, {\alpha}-MDF offers the flexibility to tailor the gain mechanism to the unique nature of the task and context. The effectiveness of {\alpha}-MDF is validated through real-world state estimation tasks on soft robots. Our experimental results demonstrate significant reductions in state estimation errors, consistently surpassing differentiable filter baselines by up to 45% in the domain of soft robotics.
The curse-of-dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs, as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in 100,000 effective dimensions in 12 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.
This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates in the two rounds from the users to the server in the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely S users. The capacity region for the information-theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition S > K - U, where K is the number of total users and U is the designed minimum number of surviving users. In this paper we fully characterize of the the capacity region for this problem by proposing a new converse bound and an achievable scheme.
Large Language Models (LLMs) are revolutionizing the field of computing education with their powerful code-generating capabilities. Traditional pedagogical practices have focused on code writing tasks, but there is now a shift in importance towards code reading, comprehension and evaluation of LLM-generated code. Alongside this shift, an important new skill is emerging -- the ability to solve programming tasks by constructing good prompts for code-generating models. In this work we introduce a new type of programming exercise to hone this nascent skill: 'Prompt Problems'. Prompt Problems are designed to help students learn how to write effective prompts for AI code generators. A student solves a Prompt Problem by crafting a natural language prompt which, when provided as input to an LLM, outputs code that successfully solves a specified programming task. We also present a new web-based tool called Promptly which hosts a repository of Prompt Problems and supports the automated evaluation of prompt-generated code. We deploy Promptly for the first time in one CS1 and one CS2 course and describe our experiences, which include student perceptions of this new type of activity and their interactions with the tool. We find that students are enthusiastic about Prompt Problems, and appreciate how the problems engage their computational thinking skills and expose them to new programming constructs. We discuss ideas for the future development of new variations of Prompt Problems, and the need to carefully study their integration into classroom practice.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.