Pixel synthesis is a promising research paradigm for image generation, which can well exploit pixel-wise prior knowledge for generation. However, existing methods still suffer from excessive memory footprint and computation overhead. In this paper, we propose a progressive pixel synthesis network towards efficient image generation, coined as PixelFolder. Specifically, PixelFolder formulates image generation as a progressive pixel regression problem and synthesizes images via a multi-stage structure, which can greatly reduce the overhead caused by large tensor transformations. In addition, we introduce novel pixel folding operations to further improve model efficiency while maintaining pixel-wise prior knowledge for end-to-end regression. With these innovative designs, we greatly reduce the expenditure of pixel synthesis, e.g., reducing 89% computation and 53% parameters compared with the latest pixel synthesis method CIPS. To validate our approach, we conduct extensive experiments on two benchmark datasets, namely FFHQ and LSUN Church. The experimental results show that with much less expenditure, PixelFolder obtains new state-of-the-art (SOTA) performance on two benchmark datasets, i.e., 3.77 FID and 2.45 FID on FFHQ and LSUN Church, respectively.Meanwhile, PixelFolder is also more efficient than the SOTA methods like StyleGAN2, reducing about 72% computation and 31% parameters, respectively. These results greatly validate the effectiveness of the proposed PixelFolder.
Recent studies have shown that autoencoder-based models can achieve superior performance on anomaly detection tasks due to their excellent ability to fit complex data in an unsupervised manner. In this work, we propose a novel autoencoder-based model, named StackVAE-G that can significantly bring the efficiency and interpretability to multivariate time series anomaly detection. Specifically, we utilize the similarities across the time series channels by the stacking block-wise reconstruction with a weight-sharing scheme to reduce the size of learned models and also relieve the overfitting to unknown noises in the training data. We also leverage a graph learning module to learn a sparse adjacency matrix to explicitly capture the stable interrelation structure among multiple time series channels for the interpretable pattern reconstruction of interrelated channels. Combining these two modules, we introduce the stacking block-wise VAE (variational autoencoder) with GNN (graph neural network) model for multivariate time series anomaly detection. We conduct extensive experiments on three commonly used public datasets, showing that our model achieves comparable (even better) performance with the state-of-the-art modelsand meanwhile requires much less computation and memory cost. Furthermore, we demonstrate that the adjacency matrix learned by our model accurately captures the interrelation among multiple channels, and can provide valuable information for failure diagnosis applications.
In data science, vector autoregression (VAR) models are popular in modeling multivariate time series in the environmental sciences and other applications. However, these models are computationally complex with the number of parameters scaling quadratically with the number of time series. In this work, we propose a so-called neighborhood vector autoregression (NVAR) model to efficiently analyze large-dimensional multivariate time series. We assume that the time series have underlying neighborhood relationships, e.g., spatial or network, among them based on the inherent setting of the problem. When this neighborhood information is available or can be summarized using a distance matrix, we demonstrate that our proposed NVAR method provides a computationally efficient and theoretically sound estimation of model parameters. The performance of the proposed method is compared with other existing approaches in both simulation studies and a real application of stream nitrogen study.
As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average (VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model. However, its practicality has long been hindered by its non-identifiability, computational intractability, and relative difficulty of interpretation. This paper introduces a novel infinite-order VAR model which, with only a little sacrifice of generality, inherits the essential temporal patterns of the VARMA model but avoids all of the above drawbacks. As another attractive feature, the temporal and cross-sectional dependence structures of this model can be interpreted separately, since they are characterized by different sets of parameters. For high-dimensional time series, this separation motivates us to impose sparsity on the parameters determining the cross-sectional dependence. As a result, greater statistical efficiency and interpretability can be achieved, while no loss of temporal information is incurred by the imposed sparsity. We introduce an $\ell_1$-regularized estimator for the proposed model and derive the corresponding nonasymptotic error bounds. An efficient block coordinate descent algorithm and a consistent model order selection method are developed. The merit of the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.
Efficient custom pooling techniques that can aggressively trim the dimensions of a feature map and thereby reduce inference compute and memory footprint for resource-constrained computer vision applications have recently gained significant traction. However, prior pooling works extract only the local context of the activation maps, limiting their effectiveness. In contrast, we propose a novel non-local self-attentive pooling method that can be used as a drop-in replacement to the standard pooling layers, such as max/average pooling or strided convolution. The proposed self-attention module uses patch embedding, multi-head self-attention, and spatial-channel restoration, followed by sigmoid activation and exponential soft-max. This self-attention mechanism efficiently aggregates dependencies between non-local activation patches during down-sampling. Extensive experiments on standard object classification and detection tasks with various convolutional neural network (CNN) architectures demonstrate the superiority of our proposed mechanism over the state-of-the-art (SOTA) pooling techniques. In particular, we surpass the test accuracy of existing pooling techniques on different variants of MobileNet-V2 on ImageNet by an average of 1.2%. With the aggressive down-sampling of the activation maps in the initial layers (providing up to 22x reduction in memory consumption), our approach achieves 1.43% higher test accuracy compared to SOTA techniques with iso-memory footprints. This enables the deployment of our models in memory-constrained devices, such as micro-controllers (without losing significant accuracy), because the initial activation maps consume a significant amount of on-chip memory for high-resolution images required for complex vision tasks. Our proposed pooling method also leverages the idea of channel pruning to further reduce memory footprints.
Video prediction is an important yet challenging problem; burdened with the tasks of generating future frames and learning environment dynamics. Recently, autoregressive latent video models have proved to be a powerful video prediction tool, by separating the video prediction into two sub-problems: pre-training an image generator model, followed by learning an autoregressive prediction model in the latent space of the image generator. However, successfully generating high-fidelity and high-resolution videos has yet to be seen. In this work, we investigate how to train an autoregressive latent video prediction model capable of predicting high-fidelity future frames with minimal modification to existing models, and produce high-resolution (256x256) videos. Specifically, we scale up prior models by employing a high-fidelity image generator (VQ-GAN) with a causal transformer model, and introduce additional techniques of top-k sampling and data augmentation to further improve video prediction quality. Despite the simplicity, the proposed method achieves competitive performance to state-of-the-art approaches on standard video prediction benchmarks with fewer parameters, and enables high-resolution video prediction on complex and large-scale datasets. Videos are available at //sites.google.com/view/harp-videos/home.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.