Large Language Models (LLMs) have demonstrated remarkable capabilities for reinforcement learning (RL) models, such as planning and reasoning capabilities. However, the problems of LLMs and RL model collaboration still need to be solved. In this study, we employ a teacher-student learning framework to tackle these problems, specifically by offering feedback for LLMs using RL models and providing high-level information for RL models with LLMs in a cooperative multi-agent setting. Within this framework, the LLM acts as a teacher, while the RL model acts as a student. The two agents cooperatively assist each other through a process of recursive help, such as "I help you help I help." The LLM agent supplies abstract information to the RL agent, enabling efficient exploration and policy improvement. In turn, the RL agent offers feedback to the LLM agent, providing valuable, real-time information that helps generate more useful tokens. This bi-directional feedback loop promotes optimization, exploration, and mutual improvement for both agents, enabling them to accomplish increasingly challenging tasks. Remarkably, we propose a practical algorithm to address the problem and conduct empirical experiments to evaluate the effectiveness of our method.
Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a $d$-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments.
Multi-agent reinforcement learning is an area of rapid advancement in artificial intelligence and machine learning. One of the important questions to be answered is how to conduct credit assignment in a multi-agent system. There have been many schemes designed to conduct credit assignment by multi-agent reinforcement learning algorithms. Although these credit assignment schemes have been proved useful in improving the performance of multi-agent reinforcement learning, most of them are designed heuristically without a rigorous theoretic basis and therefore infeasible to understand how agents cooperate. In this thesis, we aim at investigating the foundation of credit assignment in multi-agent reinforcement learning via cooperative game theory. We first extend a game model called convex game and a payoff distribution scheme called Shapley value in cooperative game theory to Markov decision process, named as Markov convex game and Markov Shapley value respectively. We represent a global reward game as a Markov convex game under the grand coalition. As a result, Markov Shapley value can be reasonably used as a credit assignment scheme in the global reward game. Markov Shapley value possesses the following virtues: (i) efficiency; (ii) identifiability of dummy agents; (iii) reflecting the contribution and (iv) symmetry, which form the fair credit assignment. Based on Markov Shapley value, we propose three multi-agent reinforcement learning algorithms called SHAQ, SQDDPG and SMFPPO. Furthermore, we extend Markov convex game to partial observability to deal with the partially observable problems, named as partially observable Markov convex game. In application, we evaluate SQDDPG and SMFPPO on the real-world problem in energy networks.
Task embedding, a meta-learning technique that captures task-specific information, has become prevalent, especially in areas such as multi-task learning, model editing, and interpretability. However, it faces challenges with the emergence of prompt-guided Large Language Models (LLMs) operating in a gradientfree manner. Existing task embedding methods rely on fine-tuned, task-specific language models, which hinders the adaptability of task embeddings across diverse models, especially prompt-based LLMs. To unleash the power of task embedding in the era of LLMs, we propose a framework for unified task embeddings (FUTE), harmonizing task embeddings from various models, including smaller language models and LLMs with varied prompts, within a single vector space. Such uniformity enables the comparison and analysis of similarities amongst different models, extending the scope and utility of existing task embedding methods in addressing multi-model scenarios, whilst maintaining their performance to be comparable to architecture-specific methods.
Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and augmented reality. With the growth of model size, retraining the whole model on both natural and artificial data is computationally expensive and inefficient. Our research aims to bridge the domain gap between natural and artificial scenarios with efficient tuning strategies. Leveraging the potential of language models, we enhance the adaptability of traditional pose estimation models across diverse scenarios with a novel framework called VLPose. VLPose leverages the synergy between language and vision to extend the generalization and robustness of pose estimation models beyond the traditional domains. Our approach has demonstrated improvements of 2.26% and 3.74% on HumanArt and MSCOCO, respectively, compared to state-of-the-art tuning strategies.
Student modeling is central to many educational technologies as it enables predicting future learning outcomes and designing targeted instructional strategies. However, open-ended learning domains pose challenges for accurately modeling students due to the diverse behaviors and a large space of possible misconceptions. To approach these challenges, we explore the application of large language models (LLMs) for in-context student modeling in open-ended learning domains. More concretely, given a particular student's attempt on a reference task as observation, the objective is to synthesize the student's attempt on a target task. We introduce a novel framework, LLM for Student Synthesis (LLM-SS), that leverages LLMs for synthesizing a student's behavior. Our framework can be combined with different LLMs; moreover, we fine-tune LLMs to boost their student modeling capabilities. We instantiate several methods based on LLM-SS framework and evaluate them using an existing benchmark, StudentSyn, for student attempt synthesis in a visual programming domain. Experimental results show that our methods perform significantly better than the baseline method NeurSS provided in the StudentSyn benchmark. Furthermore, our method using a fine-tuned version of the GPT-3.5 model is significantly better than using the base GPT-3.5 model and gets close to human tutors' performance.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.