亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Several deep neural networks have recently been shown to generate activations similar to those of the brain in response to the same input. These algorithms, however, remain largely implausible: they require (1) extraordinarily large amounts of data, (2) unobtainable supervised labels, (3) textual rather than raw sensory input, and / or (4) implausibly large memory (e.g. thousands of contextual words). These elements highlight the need to identify algorithms that, under these limitations, would suffice to account for both behavioral and brain responses. Focusing on the issue of speech processing, we here hypothesize that self-supervised algorithms trained on the raw waveform constitute a promising candidate. Specifically, we compare a recent self-supervised architecture, Wav2Vec 2.0, to the brain activity of 412 English, French, and Mandarin individuals recorded with functional Magnetic Resonance Imaging (fMRI), while they listened to ~1h of audio books. Our results are four-fold. First, we show that this algorithm learns brain-like representations with as little as 600 hours of unlabelled speech -- a quantity comparable to what infants can be exposed to during language acquisition. Second, its functional hierarchy aligns with the cortical hierarchy of speech processing. Third, different training regimes reveal a functional specialization akin to the cortex: Wav2Vec 2.0 learns sound-generic, speech-specific and language-specific representations similar to those of the prefrontal and temporal cortices. Fourth, we confirm the similarity of this specialization with the behavior of 386 additional participants. These elements, resulting from the largest neuroimaging benchmark to date, show how self-supervised learning can account for a rich organization of speech processing in the brain, and thus delineate a path to identify the laws of language acquisition which shape the human brain.

相關內容

Processing 是一門開(kai)源編(bian)程(cheng)語(yu)言和(he)與之配套的集(ji)成開(kai)發環境(IDE)的名稱。Processing 在電子藝(yi)(yi)術(shu)(shu)和(he)視覺設計社(she)區被用來教授編(bian)程(cheng)基礎,并運用于大量的新媒體和(he)互動藝(yi)(yi)術(shu)(shu)作品中(zhong)。

Self-supervised learning (SSL) has been dramatically successful not only in monolingual but also in cross-lingual settings. However, since the two settings have been studied individually in general, there has been little research focusing on how effective a cross-lingual model is in comparison with a monolingual model. In this paper, we investigate this fundamental question empirically with Japanese automatic speech recognition (ASR) tasks. First, we begin by comparing the ASR performance of cross-lingual and monolingual models for two different language tasks while keeping the acoustic domain as identical as possible. Then, we examine how much unlabeled data collected in Japanese is needed to achieve performance comparable to a cross-lingual model pre-trained with tens of thousands of hours of English and/or multilingual data. Finally, we extensively investigate the effectiveness of SSL in Japanese and demonstrate state-of-the-art performance on multiple ASR tasks. Since there is no comprehensive SSL study for Japanese, we hope this study will guide Japanese SSL research.

The advancement of imaging devices and countless images generated everyday pose an increasingly high demand on image denoising, which still remains a challenging task in terms of both effectiveness and efficiency. To improve denoising quality, numerous denoising techniques and approaches have been proposed in the past decades, including different transforms, regularization terms, algebraic representations and especially advanced deep neural network (DNN) architectures. Despite their sophistication, many methods may fail to achieve desirable results for simultaneous noise removal and fine detail preservation. In this paper, to investigate the applicability of existing denoising techniques, we compare a variety of denoising methods on both synthetic and real-world datasets for different applications. We also introduce a new dataset for benchmarking, and the evaluations are performed from four different perspectives including quantitative metrics, visual effects, human ratings and computational cost. Our experiments demonstrate: (i) the effectiveness and efficiency of representative traditional denoisers for various denoising tasks, (ii) a simple matrix-based algorithm may be able to produce similar results compared with its tensor counterparts, and (iii) the notable achievements of DNN models, which exhibit impressive generalization ability and show state-of-the-art performance on various datasets. In spite of the progress in recent years, we discuss shortcomings and possible extensions of existing techniques. Datasets, code and results are made publicly available and will be continuously updated at //github.com/ZhaomingKong/Denoising-Comparison.

Conversational search systems can improve user experience in digital libraries by facilitating a natural and intuitive way to interact with library content. However, most conversational search systems are limited to performing simple tasks and controlling smart devices. Therefore, there is a need for systems that can accurately understand the user's information requirements and perform the appropriate search activity. Prior research on intelligent systems suggested that it is possible to comprehend the functional aspect of discourse (search intent) by identifying the speech acts in user dialogues. In this work, we automatically identify the speech acts associated with spoken utterances and use them to predict the system-level search actions. First, we conducted a Wizard-of-Oz study to collect data from 75 search sessions. We performed thematic analysis to curate a gold standard dataset -- containing 1,834 utterances and 509 system actions -- of human-system interactions in three information-seeking scenarios. Next, we developed attention-based deep neural networks to understand natural language and predict speech acts. Then, the speech acts were fed to the model to predict the corresponding system-level search actions. We also annotated a second dataset to validate our results. For the two datasets, the best-performing classification model achieved maximum accuracy of 90.2% and 72.7% for speech act classification and 58.8% and 61.1%, respectively, for search act classification.

The issue of over-limit during passenger aircraft flights has drawn increasing attention in civil aviation due to its potential safety risks. To address this issue, real-time automated warning systems are essential. In this study, a real-time warning model for civil aviation over-limit is proposed based on QAR data monitoring. Firstly, highly correlated attributes to over-limit are extracted from a vast QAR dataset using the Spearman rank correlation coefficient. Because flight over-limit poses a binary classification problem with unbalanced samples, this paper incorporates cost-sensitive learning in the LSTM model. Finally, the time step length, number of LSTM cells, and learning rate in the LSTM model are optimized using a grid search approach. The model is trained on a real dataset, and its performance is evaluated on a validation set. The experimental results show that the proposed model achieves an F1 score of 0.991 and an accuracy of 0.978, indicating its effectiveness in real-time warning of civil aviation over-limit.

The differences in brain dynamics across human subjects, commonly referred to as human artifacts, have long been a challenge in the field, severely limiting the generalizability of brain dynamics recognition models. Traditional methods for human artifact removal typically employ spectrum filtering or blind source separation, based on simple prior distribution assumptions, which ultimately constrain the capacity to model each subject's domain variance. In this paper, we propose a novel approach to model human artifact removal as a generative denoising process, capable of simultaneously generating and learning subject-specific domain variance and invariant brain signals. We introduce the Domain Specific Denoising Diffusion Probabilistic Model (DS-DDPM), which decomposes the denoising process into subject domain variance and invariant content at each step. By incorporating subtle constraints and probabilistic design, we formulate domain variance and invariant content into orthogonal spaces and further supervise the domain variance with a subject classifier. This method is the first to explicitly separate human subject-specific variance through generative denoising processes, outperforming previous methods in two aspects: 1) DS-DDPM can learn more accurate subject-specific domain variance through domain generative learning compared to traditional filtering methods, and 2) DS-DDPM is the first approach capable of explicitly generating subject noise distribution. Comprehensive experimental results indicate that DS-DDPM effectively alleviates domain distribution bias for cross-domain brain dynamics signal recognition.

Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Deep supervised learning has achieved great success in the last decade. However, its deficiencies of dependence on manual labels and vulnerability to attacks have driven people to explore a better solution. As an alternative, self-supervised learning attracts many researchers for its soaring performance on representation learning in the last several years. Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks. In this survey, we take a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning. We comprehensively review the existing empirical methods and summarize them into three main categories according to their objectives: generative, contrastive, and generative-contrastive (adversarial). We further investigate related theoretical analysis work to provide deeper thoughts on how self-supervised learning works. Finally, we briefly discuss open problems and future directions for self-supervised learning. An outline slide for the survey is provided.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

北京阿比特科技有限公司