We propose and analyse an explicit boundary-preserving scheme for the strong approximations of some SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The scheme consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L^{p}(\Omega)$-convergence of order $1$, for every $p \in \mathbb{N}$, of the scheme and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting scheme to other numerical schemes for SDEs.
Weakly-supervised segmentation with label-efficient sparse annotations has attracted increasing research attention to reduce the cost of laborious pixel-wise labeling process, while the pairwise affinity modeling techniques play an essential role in this task. Most of the existing approaches focus on using the local appearance kernel to model the neighboring pairwise potentials. However, such a local operation fails to capture the long-range dependencies and ignores the topology of objects. In this work, we formulate the affinity modeling as an affinity propagation process, and propose a local and a global pairwise affinity terms to generate accurate soft pseudo labels. An efficient algorithm is also developed to reduce significantly the computational cost. The proposed approach can be conveniently plugged into existing segmentation networks. Experiments on three typical label-efficient segmentation tasks, i.e. box-supervised instance segmentation, point/scribble-supervised semantic segmentation and CLIP-guided semantic segmentation, demonstrate the superior performance of the proposed approach.
We consider a new splitting based on the Sherman-Morrison-Woodbury formula, which is particularly effective with iterative methods for the numerical solution of large linear systems. These systems involve matrices that are perturbations of circulant or block circulant matrices, which commonly arise in the discretization of differential equations using finite element or finite difference methods. We prove the convergence of the new iteration without making any assumptions regarding the symmetry or diagonal-dominance of the matrix. To illustrate the efficacy of the new iteration we present various applications. These include extensions of the new iteration to block matrices that arise in certain saddle point problems as well as two-dimensional finite difference discretizations. The new method exhibits fast convergence in all of the test cases we used. It has minimal storage requirements, straightforward implementation and compatibility with nearly circulant matrices via the Fast Fourier Transform. For this reasons it can be a valuable tool for the solution of various finite element and finite difference discretizations of differential equations.
Most people who have tried to learn a foreign language would have experienced difficulties understanding or speaking with a native speaker's accent. For native speakers, understanding or speaking a new accent is likewise a difficult task. An accent conversion system that changes a speaker's accent but preserves that speaker's voice identity, such as timbre and pitch, has the potential for a range of applications, such as communication, language learning, and entertainment. Existing accent conversion models tend to change the speaker identity and accent at the same time. Here, we use adversarial learning to disentangle accent dependent features while retaining other acoustic characteristics. What sets our work apart from existing accent conversion models is the capability to convert an unseen speaker's utterance to multiple accents while preserving its original voice identity. Subjective evaluations show that our model generates audio that sound closer to the target accent and like the original speaker.
We develop an iterative differentially private algorithm for client selection in federated settings. We consider a federated network wherein clients coordinate with a central server to complete a task; however, the clients decide whether to participate or not at a time step based on their preferences -- local computation and probabilistic intent. The algorithm does not require client-to-client information exchange. The developed algorithm provides near-optimal values to the clients over long-term average participation with a certain differential privacy guarantee. Finally, we present the experimental results to check the algorithm's efficacy.
Often linear regression is used to perform mediation analysis. However, in many instances, the underlying relationships may not be linear, as in the case of placental-fetal hormones and fetal development. Although, the exact functional form of the relationship may be unknown, one may hypothesize the general shape of the relationship. For these reasons, we develop a novel shape-restricted inference-based methodology for conducting mediation analysis. This work is motivated by an application in fetal endocrinology where researchers are interested in understanding the effects of pesticide application on birth weight, with human chorionic gonadotropin (hCG) as the mediator. We assume a practically plausible set of nonlinear effects of hCG on the birth weight and a linear relationship between pesticide exposure and hCG, with both exposure-outcome and exposure-mediator models being linear in the confounding factors. Using the proposed methodology on a population-level prenatal screening program data, with hCG as the mediator, we discovered that, while the natural direct effects suggest a positive association between pesticide application and birth weight, the natural indirect effects were negative.
We propose a new coded blockchain scheme suitable for the Internet-of-Things (IoT) network. In contrast to existing works for coded blockchains, especially blockchain-of-things, the proposed scheme is more realistic, practical, and secure while achieving high throughput. This is accomplished by: 1) modeling the variety of transactions using a reward model, based on which an optimization problem is solved to select transactions that are more accessible and cheaper computational-wise to be processed together; 2) a transaction-based and lightweight consensus algorithm that emphasizes on using the minimum possible number of miners for processing the transactions; and 3) employing the raptor codes with linear-time encoding and decoding which results in requiring lower storage to maintain the blockchain and having a higher throughput. We provide detailed analysis and simulation results on the proposed scheme and compare it with the state-of-the-art coded IoT blockchain schemes including Polyshard and LCB, to show the advantages of our proposed scheme in terms of security, storage, decentralization, and throughput.
We introduce a neural-preconditioned iterative solver for Poisson equations with mixed boundary conditions. The Poisson equation is ubiquitous in scientific computing: it governs a wide array of physical phenomena, arises as a subproblem in many numerical algorithms, and serves as a model problem for the broader class of elliptic PDEs. The most popular Poisson discretizations yield large sparse linear systems. At high resolution, and for performance-critical applications, iterative solvers can be advantageous for these -- but only when paired with powerful preconditioners. The core of our solver is a neural network trained to approximate the inverse of a discrete structured-grid Laplace operator for a domain of arbitrary shape and with mixed boundary conditions. The structure of this problem motivates a novel network architecture that we demonstrate is highly effective as a preconditioner even for boundary conditions outside the training set. We show that on challenging test cases arising from an incompressible fluid simulation, our method outperforms state-of-the-art solvers like algebraic multigrid as well as some recent neural preconditioners.
Inspired by biological motion generation, central pattern generators (CPGs) is frequently employed in legged robot locomotion control to produce natural gait pattern with low-dimensional control signals. However, the limited adaptability and stability over complex terrains hinder its application. To address this issue, this paper proposes a terrain-adaptive locomotion control method that incorporates deep reinforcement learning (DRL) framework into CPG, where the CPG model is responsible for the generation of synchronized signals, providing basic locomotion gait, while DRL is integrated to enhance the adaptability of robot towards uneven terrains by adjusting the parameters of CPG mapping functions. The experiments conducted on the hexapod robot in Isaac Gym simulation environment demonstrated the superiority of the proposed method in terrain-adaptability, convergence rate and reward design complexity.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.