This thesis studies the domain of collective robotics, and more particularly the optimization problems of multirobot systems in the context of exploration, path planning and coordination. It includes two contributions. The first one is the use of the Butterfly Optimization Algorithm (BOA) to solve the Unknown Area Exploration problem with energy constraints in dynamic environments. This algorithm was never used for solving robotics problems before, as far as we know. We proposed a new version of this algorithm called xBOA based on the crossover operator to improve the diversity of the candidate solutions and speed up the convergence of the algorithm. The second contribution is the development of a new simulation framework for benchmarking dynamic incremental problems in robotics such as exploration tasks. The framework is made in such a manner to be generic to quickly compare different metaheuristics with minimum modifications, and to adapt easily to single and multi-robot scenarios. Also, it provides researchers with tools to automate their experiments and generate visuals, which will allow them to focus on more important tasks such as modeling new algorithms. We conducted a series of experiments that showed promising results and allowed us to validate our approach and model.
Many approaches for optimizing decision making systems rely on gradient based methods requiring informative feedback from the environment. However, in the case where such feedback is sparse or uninformative, such approaches may result in poor performance. Derivative-free approaches such as Bayesian Optimization mitigate the dependency on the quality of gradient feedback, but are known to scale poorly in the high-dimension setting of complex decision making systems. This problem is exacerbated if the system requires interactions between several actors cooperating to accomplish a shared goal. To address the dimensionality challenge, we propose a compact multi-layered architecture modeling the dynamics of actor interactions through the concept of role. Additionally, we introduce Hessian-aware Bayesian Optimization to efficiently optimize the multi-layered architecture parameterized by a large number of parameters. Experimental results demonstrate that our method (HA-GP-UCB) works effectively on several benchmarks under resource constraints and malformed feedback settings.
Autonomous collaborative networks of devices are rapidly emerging in numerous domains, such as self-driving cars, smart factories, critical infrastructure, and Internet of Things in general. Although autonomy and self-organization are highly desired properties, they increase vulnerability to attacks. Hence, autonomous networks need dependable mechanisms to detect malicious devices in order to prevent compromise of the entire network. However, current mechanisms to detect malicious devices either require a trusted central entity or scale poorly. In this paper, we present GrandDetAuto, the first scheme to identify malicious devices efficiently within large autonomous networks of collaborating entities. GrandDetAuto functions without relying on a central trusted entity, works reliably for very large networks of devices, and is adaptable to a wide range of application scenarios thanks to interchangeable components. Our scheme uses random elections to embed integrity validation schemes in distributed consensus, providing a solution supporting tens of thousands of devices. We implemented and evaluated a concrete instance of GrandDetAuto on a network of embedded devices and conducted large-scale network simulations with up to 100000 nodes. Our results show the effectiveness and efficiency of our scheme, revealing logarithmic growth in run-time and message complexity with increasing network size. Moreover, we provide an extensive evaluation of key parameters showing that GrandDetAuto is applicable to many scenarios with diverse requirements.
The problem of predicting driver attention from the driving perspective is gaining increasing research focus due to its remarkable significance for autonomous driving and assisted driving systems. The driving experience is extremely important for safe driving,a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on the driving experience and quickly pay attention to the corresponding zones.However, the nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods, and the current methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative and long-term temporal information. The incremental knowledge in our model is like the driving experience of humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.
Tool use, a hallmark feature of human intelligence, remains a challenging problem in robotics due the complex contacts and high-dimensional action space. In this work, we present a novel method to enable reinforcement learning of tool use behaviors. Our approach provides a scalable way to learn the operation of tools in a new category using only a single demonstration. To this end, we propose a new method for generalizing grasping configurations of multi-fingered robotic hands to novel objects. This is used to guide the policy search via favorable initializations and a shaped reward signal. The learned policies solve complex tool use tasks and generalize to unseen tools at test time. Visualizations and videos of the trained policies are available at //maltemosbach.github.io/generalizable_tool_use.
Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities. The challenges of addressing real-time application is amplified by the need to operate on resource constrained hardware. Whilst development of real-time methods for these platforms has increased, these models are unable to sufficiently reason about uncertainty present when applied on embedded real-time systems. This paper addresses this by combining deep feature extraction from pre-trained models with Bayesian regression and moment propagation for uncertainty aware predictions. We demonstrate how the proposed method can yield meaningful epistemic uncertainty on embedded hardware in real-time whilst maintaining predictive performance.
Search and information retrieval systems are becoming more expressive in interpreting user queries beyond the traditional weighted bag-of-words model of document retrieval. For example, searching for a flight status or a game score returns a dynamically generated response along with supporting, pre-authored documents contextually relevant to the query. In this paper, we extend this hybrid search paradigm to data repositories that contain curated data sources and visualization content. We introduce a semantic search interface, OLIO, that provides a hybrid set of results comprising both auto-generated visualization responses and pre-authored charts to blend analytical question-answering with content discovery search goals. We specifically explore three search scenarios - question-and-answering, exploratory search, and design search over data repositories. The interface also provides faceted search support for users to refine and filter the conventional best-first search results based on parameters such as author name, time, and chart type. A preliminary user evaluation of the system demonstrates that OLIO's interface and the hybrid search paradigm collectively afford greater expressivity in how users discover insights and visualization content in data repositories.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.