For the Crouzeix-Raviart and enriched Crouzeix-Raviart elements, asymptotic expansions of eigenvalues of the Stokes operator are derived by establishing two pseudostress interpolations, which admit a full one-order supercloseness with respect to the numerical velocity and the pressure, respectively. The design of these interpolations overcomes the difficulty caused by the lack of supercloseness of the canonical interpolations for the two nonconforming elements, and leads to an intrinsic and concise asymptotic analysis of numerical eigenvalues, which proves an optimal superconvergence of eigenvalues by the extrapolation algorithm. Meanwhile, an optimal superconvergence of postprocessed approximations for the Stokes equation is proved by use of this supercloseness. Finally, numerical experiments are tested to verify the theoretical results.
A preconditioning strategy is proposed for the iterative solve of large numbers of linear systems with variable matrix and right-hand side which arise during the computation of solution statistics of stochastic elliptic partial differential equations with random variable coefficients sampled by Monte Carlo. Building on the assumption that a truncated Karhunen-Lo\`{e}ve expansion of a known transform of the random variable coefficient is known, we introduce a compact representation of the random coefficient in the form of a Voronoi quantizer. The number of Voronoi cells, each of which is represented by a centroidal variable coefficient, is set to the prescribed number $P$ of preconditioners. Upon sampling the random variable coefficient, the linear system assembled with a given realization of the coefficient is solved with the preconditioner whose centroidal variable coefficient is the closest to the realization. We consider different ways to define and obtain the centroidal variable coefficients, and we investigate the properties of the induced preconditioning strategies in terms of average number of solver iterations for sequential simulations, and of load balancing for parallel simulations. Another approach, which is based on deterministic grids on the system of stochastic coordinates of the truncated representation of the random variable coefficient, is proposed with a stochastic dimension which increases with the number $P$ of preconditioners. This approach allows to bypass the need for preliminary computations in order to determine the optimal stochastic dimension of the truncated approximation of the random variable coefficient for a given number of preconditioners.
Algorithms for initializing particle distribution in SPH simulations of complex geometries have been proven essential for improving the accuracy of SPH simulations. However, no such algorithms exist for boundary integral SPH models, which can model complex geometries without needing virtual particle layers. This study introduces a Boundary Integral based Particle Initialization (BIPI) algorithm. It consists of a particle-shifting technique carefully designed to redistribute particles to fit the boundary by using the boundary integral formulation for particles adjacent to the boundary. The proposed BIPI algorithm gives special consideration to particles adjacent to the boundary to prevent artificial volume compression. It can automatically produce a "uniform" particle distribution with reduced and stabilized concentration gradient for domains with complex geometrical shapes. Finally, a number of examples are presented to demonstrate the effectiveness of the proposed algorithm.
Furihata and Matsuo proposed in 2010 an energy-conserving scheme for the Zakharov equations, as an application of the discrete variational derivative method (DVDM). This scheme is distinguished from conventional methods (in particular the one devised by Glassey in 1992) in that the invariants are consistent with respect to time, but it has not been sufficiently studied both theoretically and numerically. In this study, we theoretically prove the solvability under the loosest possible assumptions. We also prove the convergence of this DVDM scheme by improving the argument by Glassey. Furthermore, we perform intensive numerical experiments for comparing the above two schemes. It is found that the DVDM scheme is superior in terms of accuracy, but since it is fully-implicit, the linearly-implicit Glassey scheme is better for practical efficiency. In addition, we proposed a way to choose a solution for the first step that would allow Glassey's scheme to work more efficiently.
In this work, we develop recent research on the fully mixed virtual element method (mixed-VEM) based on the Banach space for the stationary Boussinesq equation to suggest and analyze a new mixed-VEM for the stationary two-dimensional Boussinesq equation with temperature-dependent parameters in terms of the pseudostress, vorticity, velocity, pseudoheat vector and temperature fields. The well-posedness of the continuous formulation is analyzed utilizing a fixed-point strategy, a smallness assumption on the data, and some additional regularities on the solution. The discretization for the mentioned variables is based on the coupling $\mathbb{H}(\mathbf{div}_{6/5})$ -- and $\mathbf{H}(\mathrm{div}_{6/5})$ -- conforming virtual element techniques. The proposed scheme is rewritten as an equivalent fixed point operator equation, so that its existence and stability estimates have been proven. In addition, an a priori convergence analysis is established by utilizing the C\'ea estimate and a suitable assumption on data for all variables in their natural norms showing an optimal rate of convergence. Finally, several numerical examples are presented to illustrate the performance of the proposed method.
The Sum-of-Squares (SOS) approximation method is a technique used in optimization problems to derive lower bounds on the optimal value of an objective function. By representing the objective function as a sum of squares in a feature space, the SOS method transforms non-convex global optimization problems into solvable semidefinite programs. This note presents an overview of the SOS method. We start with its application in finite-dimensional feature spaces and, subsequently, we extend it to infinite-dimensional feature spaces using reproducing kernels (k-SOS). Additionally, we highlight the utilization of SOS for estimating some relevant quantities in information theory, including the log-partition function.
It is well known that the quasi-optimality of the Galerkin finite element method for the Helmholtz equation is dependent on the mesh size and the wave-number. In literature, different criteria have been proposed to ensure quasi-optimality. Often these criteria are difficult to obtain and depend on wave-number explicit regularity estimates. In the present work, we focus on criteria based on T-coercivity and weak T-coercivity, which highlight mesh size dependence on the gap between the square of the wavenumber and Laplace eigenvalues. We also propose an adaptive scheme, coupled with a residual-based indicator, for optimal mesh generation with minimal degrees of freedom.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
This article is concerned with the multilevel Monte Carlo (MLMC) methods for approximating expectations of some functions of the solution to the Heston 3/2-model from mathematical finance, which takes values in $(0, \infty)$ and possesses superlinearly growing drift and diffusion coefficients. To discretize the SDE model, a new Milstein-type scheme is proposed to produce independent sample paths. The proposed scheme can be explicitly solved and is positivity-preserving unconditionally, i.e., for any time step-size $h>0$. This positivity-preserving property for large discretization time steps is particularly desirable in the MLMC setting. Furthermore, a mean-square convergence rate of order one is proved in the non-globally Lipschitz regime, which is not trivial, as the diffusion coefficient grows super-linearly. The obtained order-one convergence in turn promises the desired relevant variance of the multilevel estimator and justifies the optimal complexity $\mathcal{O}(\epsilon^{-2})$ for the MLMC approach, where $\epsilon > 0$ is the required target accuracy. Numerical experiments are finally reported to confirm the theoretical findings.
This work considers the nodal finite element approximation of peridynamics, in which the nodal displacements satisfy the peridynamics equation at each mesh node. For the nonlinear bond-based peridynamics model, it is shown that, under the suitable assumptions on an exact solution, the discretized solution associated with the central-in-time and nodal finite element discretization converges to the exact solution in $L^2$ norm at the rate $C_1 \Delta t + C_2 h^2/\epsilon^2$. Here, $\Delta t$, $h$, and $\epsilon$ are time step size, mesh size, and the size of the horizon or nonlocal length scale, respectively. Constants $C_1$ and $C_2$ are independent of $h$ and $\Delta t$ and depend on the norms of the exact solution. Several numerical examples involving pre-crack, void, and notch are considered, and the efficacy of the proposed nodal finite element discretization is analyzed.
It is known that singular values of idempotent matrices are either zero or larger or equal to one \cite{HouC63}. We state exactly how many singular values greater than one, equal to one, and equal to zero there are. Moreover, we derive a singular value decomposition of idempotent matrices which reveals a tight relationship between its left and right singular vectors. The same idea is used to augment a discovery regarding the singular values of involutory matrices as presented in \cite{FasH20}.