We propose and analyze volume-preserving parametric finite element methods for surface diffusion, conserved mean curvature flow and an intermediate evolution law in an axisymmetric setting. The weak formulations are presented in terms of the generating curves of the axisymmetric surfaces. The proposed numerical methods are based on piecewise linear parametric finite elements. The constructed fully practical schemes satisfy the conservation of the enclosed volume. In addition, we prove the unconditional stability and consider the distribution of vertices for the discretized schemes. The introduced methods are implicit and the resulting nonlinear systems of equations can be solved very efficiently and accurately via the Newton's iterative method. Numerical results are presented to show the accuracy and efficiency of the introduced schemes for computing the considered axisymmetric geometric flows.
In this work we demonstrate that SVD-based model reduction techniques known for ordinary differential equations, such as the proper orthogonal decomposition, can be extended to stochastic differential equations in order to reduce the computational cost arising from both the high dimension of the considered stochastic system and the large number of independent Monte Carlo runs. We also extend the proper symplectic decomposition method to stochastic Hamiltonian systems, both with and without external forcing, and argue that preserving the underlying symplectic or variational structures results in more accurate and stable solutions that conserve energy better than when the non-geometric approach is used. We validate our proposed techniques with numerical experiments for a semi-discretization of the stochastic nonlinear Schr\"odinger equation and the Kubo oscillator.
We are concerned with the problem of decomposing the parameter space of a parametric system of polynomial equations, and possibly some polynomial inequality constraints, with respect to the number of real solutions that the system attains. Previous studies apply a two step approach to this problem, where first the discriminant variety of the system is computed via a Groebner Basis (GB), and then a Cylindrical Algebraic Decomposition (CAD) of this is produced to give the desired computation. However, even on some reasonably small applied examples this process is too expensive, with computation of the discriminant variety alone infeasible. In this paper we develop new approaches to build the discriminant variety using resultant methods (the Dixon resultant and a new method using iterated univariate resultants). This reduces the complexity compared to GB and allows for a previous infeasible example to be tackled. We demonstrate the benefit by giving a symbolic solution to a problem from population dynamics - the analysis of the steady states of three connected populations which exhibit Allee effects - which previously could only be tackled numerically.
Deep neural networks are powerful tools for approximating functions, and they are applied to successfully solve various problems in many fields. In this paper, we propose a neural network-based numerical method to solve partial differential equations. In this new framework, the method is designed on weak formulations, and the unknown functions are approximated by deep neural networks and test functions can be chosen by different approaches, for instance, basis functions of finite element methods, neural networks, and so on. Because the spaces of trial function and test function are different, we name this new approach by Deep Petrov-Galerkin Method (DPGM). The resulted linear system is not necessarily to be symmetric and square, so the discretized problem is solved by a least-square method. Take the Poisson problem as an example, mixed DPGMs based on several mixed formulations are proposed and studied as well. In addition, we apply the DPGM to solve two classical time-dependent problems based on the space-time approach, that is, the unknown function is approximated by a neural network, in which temporal variable and spatial variables are treated equally, and the initial conditions are regarded as boundary conditions for the space-time domain. Finally, several numerical examples are presented to show the performance of the DPGMs, and we observe that this new method outperforms traditional numerical methods in several aspects.
Casting nonlocal problems in variational form and discretizing them with the finite element (FE) method facilitates the use of nonlocal vector calculus to prove well-posedeness, convergence, and stability of such schemes. Employing an FE method also facilitates meshing of complicated domain geometries and coupling with FE methods for local problems. However, nonlocal weak problems involve the computation of a double-integral, which is computationally expensive and presents several challenges. In particular, the inner integral of the variational form associated with the stiffness matrix is defined over the intersections of FE mesh elements with a ball of radius $\delta$, where $\delta$ is the range of nonlocal interaction. Identifying and parameterizing these intersections is a nontrivial computational geometry problem. In this work, we propose a quadrature technique where the inner integration is performed using quadrature points distributed over the full ball, without regard for how it intersects elements, and weights are computed based on the generalized moving least squares method. Thus, as opposed to all previously employed methods, our technique does not require element-by-element integration and fully circumvents the computation of element-ball intersections. This paper considers one- and two-dimensional implementations of piecewise linear continuous FE approximations, focusing on the case where the element size h and the nonlocal radius $\delta$ are proportional, as is typical of practical computations. When boundary conditions are treated carefully and the outer integral of the variational form is computed accurately, the proposed method is asymptotically compatible in the limit of $h \sim \delta \to 0$, featuring at least first-order convergence in L^2 for all dimensions, using both uniform and nonuniform grids.
We present a differentially private algorithm for releasing the sequence of $k$ elements with the highest counts from a data domain of $d$ elements. The algorithm is a "joint" instance of the exponential mechanism, and its output space consists of all $O(d^k)$ length-$k$ sequences. Our main contribution is a method to sample this exponential mechanism in time $O(dk\log(k) + d\log(d))$ and space $O(dk)$. Experiments show that this approach outperforms existing pure differential privacy methods and improves upon even approximate differential privacy methods for moderate $k$.
We study the overparametrization bounds required for the global convergence of stochastic gradient descent algorithm for a class of one hidden layer feed-forward neural networks, considering most of the activation functions used in practice, including ReLU. We improve the existing state-of-the-art results in terms of the required hidden layer width. We introduce a new proof technique combining nonlinear analysis with properties of random initializations of the network. First, we establish the global convergence of continuous solutions of the differential inclusion being a nonsmooth analogue of the gradient flow for the MSE loss. Second, we provide a technical result (working also for general approximators) relating solutions of the aforementioned differential inclusion to the (discrete) stochastic gradient descent sequences, hence establishing linear convergence towards zero loss for the stochastic gradient descent iterations.
We derive and analyze a symmetric interior penalty discontinuous Galerkin scheme for the approximation of the second-order form of the radiative transfer equation in slab geometry. Using appropriate trace lemmas, the analysis can be carried out as for more standard elliptic problems. Supporting examples show the accuracy and stability of the method also numerically. For discretization, we employ quadtree-like grids, which allow for local refinement in phase-space, and we show exemplary that adaptive methods can efficiently approximate discontinuous solutions.
Consider solving large sparse range symmetric singular linear systems $A{\bf x} = {\bf b}$ which arise, for instance, in the discretization of convection diffusion equations with periodic boundary conditions, and partial differential equations for electromagnetic fields using the edge-based finite element method. In theory, the Generalized Minimal Residual (GMRES) method converges to the least squares solution for inconsistent systems if the coefficient matrix $A$ is range symmetric, i.e. ${\rm R}(A)={ {\rm R}(A^{\rm T} })$, where ${\rm R}(A)$ is the range space of $A$. However, in practice, GMRES may not converge due to numerical instability. In order to improve the convergence, we propose using the pseudo-inverse for the solution of the severely ill-conditioned Hessenberg systems in GMRES. Numerical experiments on semi-definite inconsistent systems indicate that the method is efficient and robust. Finally, we further improve the convergence of the method, by reorthogonalizing the Modified Gram-Schmidt procedure.
Kernel matrices, which arise from discretizing a kernel function $k(x,x')$, have a variety of applications in mathematics and engineering. Classically, the celebrated fast multipole method was designed to perform matrix multiplication on kernel matrices of dimension $N$ in time almost linear in $N$ by using techniques later generalized into the linear algebraic framework of hierarchical matrices. In light of this success, we propose a quantum algorithm for efficiently performing matrix operations on hierarchical matrices by implementing a quantum block-encoding of the hierarchical matrix structure. When applied to many kernel matrices, our quantum algorithm can solve quantum linear systems of dimension $N$ in time $O(\kappa \operatorname{polylog}(\frac{N}{\varepsilon}))$, where $\kappa$ and $\varepsilon$ are the condition number and error bound of the matrix operation. This runtime is exponentially faster than any existing quantum algorithms for implementing dense kernel matrices. Finally, we discuss possible applications of our methodology in solving integral equations or accelerating computations in N-body problems.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.