亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we derive a Large Deviation Principle (LDP) for inhomogeneous U/V-statistics of a general order. Using this, we derive a LDP for two types of statistics: random multilinear forms, and number of monochromatic copies of a subgraph. We show that the corresponding rate functions in these cases can be expressed as a variational problem over a suitable space of functions. We use the tools developed to study Gibbs measures with the corresponding Hamiltonians, which include tensor generalizations of both Ising (with non-compact base measure) and Potts models. For these Gibbs measures, we establish scaling limits of log normalizing constants, and weak laws in terms of weak* topology, which are of possible independent interest.

相關內容

We present a novel application of neural networks to design improved mixing elements for single-screw extruders. Specifically, we propose to use neural networks in numerical shape optimization to parameterize geometries. Geometry parameterization is crucial in enabling efficient shape optimization as it allows for optimizing complex shapes using only a few design variables. Recent approaches often utilize CAD data in conjunction with spline-based methods where the spline's control points serve as design variables. Consequently, these approaches rely on the same design variables as specified by the human designer. While this choice is convenient, it either restricts the design to small modifications of given, initial design features - effectively prohibiting topological changes - or yields undesirably many design variables. In this work, we step away from CAD and spline-based approaches and construct an artificial, feature-dense yet low-dimensional optimization space using a generative neural network. Using the neural network for the geometry parameterization extends state-of-the-art methods in that the resulting design space is not restricted to user-prescribed modifications of certain basis shapes. Instead, within the same optimization space, we can interpolate between and explore seemingly unrelated designs. To show the performance of this new approach, we integrate the developed shape parameterization into our numerical design framework for dynamic mixing elements in plastics extrusion. Finally, we challenge the novel method in a competitive setting against current free-form deformation-based approaches and demonstrate the method's performance even at this early stage.

Software is a great enabler for a number of projects that otherwise would be impossible to perform. Such projects include Space Exploration, Weather Modeling, Genome Projects, and many others. It is critical that software aiding these projects does what it is expected to do. In the terminology of software engineering, software that corresponds to requirements, that is does what it is expected to do is called correct. Checking the correctness of software has been the focus of a great deal of research in the area of software engineering. Practitioners in the field in which software is applied quite often do not assign much value to checking this correctness. Yet, as software systems become larger, potentially combined with distributed subsystems written by different authors, such verification becomes even more important. Concurrent, distributed systems are prone to dangerous errors due to different speeds of execution of their components such as deadlocks, race conditions, or violation of project-specific properties. This project describes an application of a static analysis method called model checking to verification of a distributed system for the Bioinformatics process. In it, we evaluate the efficiency of the model checking approach to the verification of combined processes with an increasing number of concurrently executed steps. We show that our experimental results correspond to analytically derived expectations. We also highlight the importance of static analysis to combined processes in the Bioinformatics field.

Resistance distance has been studied extensively in the past years, with the majority of previous studies devoted to undirected networks, in spite of the fact that various realistic networks are directed. Although several generalizations of resistance distance on directed graphs have been proposed, they either have no physical interpretation or are not a metric. In this paper, we first extend the definition of resistance distance to strongly connected directed graphs based on random walks and show that the two-node resistance distance on directed graphs is a metric. Then, we introduce the Laplacian matrix for directed graphs that subsumes the Laplacian matrix of undirected graphs as a particular case and use its pseudoinverse to express the two-node resistance distance, and many other relevant quantities derived from resistance distances. Moreover, we define the resistance distance between a vertex and a vertex group on directed graphs and further define a problem of optimally selecting a group of fixed number of nodes, such that their resistance distance is minimized. Since this combinatorial optimization problem is NP-hard, we present a greedy algorithm with a proved approximation ratio, and conduct experiments on model and realistic networks to validate the performance of this approximation algorithm.

A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical observations, by focusing the studies on random graph models that are used to represent practical instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good representations of complex real-world networks, by expressing edge probabilities as a function that depends on (heterogeneous) vertex weights and distances in some underlying geometric space that the vertices are distributed in. While most of the parameters of the model are understood well, it was unclear how the dimensionality of the ground space affects the structure of the graphs. In this paper, we complement existing research into the dimension of geometric random graph models and the ongoing study of determining the dimensionality of real-world networks, by studying how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how quickly the decay of the geometry impacts important graph structures. In particular, we study the expected number of cliques of a given size as well as the clique number and characterize phase transitions at which their behavior changes fundamentally. Finally, our insights help in better understanding previous results about the impact of the dimensionality on geometric random graphs.

In recommender systems, reinforcement learning solutions have effectively boosted recommendation performance because of their ability to capture long-term user-system interaction. However, the action space of the recommendation policy is a list of items, which could be extremely large with a dynamic candidate item pool. To overcome this challenge, we propose a hyper-actor and critic learning framework where the policy decomposes the item list generation process into a hyper-action inference step and an effect-action selection step. The first step maps the given state space into a vectorized hyper-action space, and the second step selects the item list based on the hyper-action. In order to regulate the discrepancy between the two action spaces, we design an alignment module along with a kernel mapping function for items to ensure inference accuracy and include a supervision module to stabilize the learning process. We build simulated environments on public datasets and empirically show that our framework is superior in recommendation compared to standard RL baselines.

Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with $1.18$ million real-world products and $12,087$ crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over $1,600$ human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of $29\%$, which outperforms rule-based heuristics ($9.6\%$) but is far lower than human expert performance ($59\%$). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild.

The graph Laplacian is a fundamental object in the analysis of and optimization on graphs. This operator can be extended to a simplicial complex $K$ and therefore offers a way to perform ``signal processing" on $p$-(co)chains of $K$. Recently, the concept of persistent Laplacian was proposed and studied for a pair of simplicial complexes $K\hookrightarrow L$ connected by an inclusion relation, further broadening the use of Laplace-based operators. In this paper, we expand the scope of the persistent Laplacian by generalizing it to a pair of simplicial complexes connected by a simplicial map $f: K \to L$. Such simplicial map setting arises frequently, e.g., when relating a coarsened simplicial representation with an original representation, or the case when the two simplicial complexes are spanned by different point sets i.e. cases in which it does not hold that $K\subset L$. However, the simplicial map setting is more challenging than the inclusion setting since the underlying algebraic structure is more complicated. We present a natural generalization of the persistent Laplacian to the simplicial setting. To shed insight on the structure behind it, as well as to develop an algorithm to compute it, we exploit the relationship between the persistent Laplacian and the Schur complement of a matrix. A critical step is to view the Schur complement as a functorial way of restricting a self-adjoint PSD operator to a given subspace. As a consequence, we prove that persistent Betti numbers of a simplicial map can be recovered by persistent Laplacians. We then propose an algorithm for finding the matrix representations of persistent Laplacians which in turn yields a new algorithm for computing persistent Betti numbers of a simplicial map. Finally, we study the persistent Laplacian on simplicial towers under simplicial maps and establish monotonicity results for their eigenvalues.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

北京阿比特科技有限公司