亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Comparative effectiveness research with randomized trials or observational studies frequently addresses a time-to-event outcome and can require unique considerations in the presence of treatment noncompliance. Motivated by the challenges in addressing noncompliance in the ADAPTABLE pragmatic trial, we develop a multiply robust estimator to estimate the principal survival causal effects under the principal ignorability and monotonicity assumption. The multiply robust estimator involves several working models including that for the treatment assignment, the compliance strata, censoring, and time to event of interest. We demonstrate that the proposed estimator is consistent even if one, and sometimes two, of the working models are incorrectly specified. We further contribute sensitivity analysis strategies for investigating the robustness of the multiply robust estimator under violation of two identification assumptions specific to noncompliance. We implement the multiply robust method in the ADAPTABLE trial to evaluate the effect of low- versus high-dose aspirin assignment on patients' death and hospitalization from cardiovascular diseases, and further obtain the causal effect estimates when the identification assumptions fail to hold. We find that, comparing to low-dose assignment, assignment to the high-dose leads to differential effects among always high-dose takers, compliers, and always low-dose takers. Such treatment effect heterogeneity contributes to the null intention-to-treatment effect, and suggests that policy makers should design personalized strategies based on potential compliance patterns to maximize treatment benefits to the entire study population.

相關內容

Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects in the presence of high-dimensional covariates. Our estimator combines an $\ell_1$-penalized regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semiparametric efficiency of the estimated heterogeneous quantile treatment effect process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer's disease patients who participated in the UK Biobank study.

Matching and weighting methods for observational studies involve the choice of an estimand, the causal effect with reference to a specific target population. Commonly used estimands include the average treatment effect in the treated (ATT), the average treatment effect in the untreated (ATU), the average treatment effect in the population (ATE), and the average treatment effect in the overlap (i.e., equipoise population; ATO). Each estimand has its own assumptions, interpretation, and statistical methods that can be used to estimate it. This article provides guidance on selecting and interpreting an estimand to help medical researchers correctly implement statistical methods used to estimate causal effects in observational studies and to help audiences correctly interpret the results and limitations of these studies. The interpretations of the estimands resulting from regression and instrumental variable analyses are also discussed. Choosing an estimand carefully is essential for making valid inferences from the analysis of observational data and ensuring results are replicable and useful for practitioners.

The practical utility of causality in decision-making is widely recognized, with causal discovery and inference being inherently intertwined. Nevertheless, a notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference. To address this gap, we evaluate six established baseline causal discovery methods and a newly proposed method based on GFlowNets, on the downstream task of treatment effect estimation. Through the implementation of a robust evaluation procedure, we offer valuable insights into the efficacy of these causal discovery methods for treatment effect estimation, considering both synthetic and real-world scenarios, as well as low-data scenarios. Furthermore, the results of our study demonstrate that GFlowNets possess the capability to effectively capture a wide range of useful and diverse ATE modes.

Missing data arise in most applied settings and are ubiquitous in electronic health records (EHR). When data are missing not at random (MNAR) with respect to measured covariates, sensitivity analyses are often considered. These post-hoc solutions, however, are often unsatisfying in that they are not guaranteed to yield concrete conclusions. Motivated by an EHR-based study of long-term outcomes following bariatric surgery, we consider the use of double sampling as a means to mitigate MNAR outcome data when the statistical goals are estimation and inference regarding causal effects. We describe assumptions that are sufficient for the identification of the joint distribution of confounders, treatment, and outcome under this design. Additionally, we derive efficient and robust estimators of the average causal treatment effect under a nonparametric model and under a model assuming outcomes were, in fact, initially missing at random (MAR). We compare these in simulations to an approach that adaptively estimates based on evidence of violation of the MAR assumption. Finally, we also show that the proposed double sampling design can be extended to handle arbitrary coarsening mechanisms, and derive nonparametric efficient estimators of any smooth full data functional.

With the rise of Extended Reality (XR) technology, there is a growing need for real-time light field generation from sparse view inputs. Existing methods can be classified into offline techniques, which can generate high-quality novel views but at the cost of long inference/training time, and online methods, which either lack generalizability or produce unsatisfactory results. However, we have observed that the intrinsic sparse manifold of Multi-plane Images (MPI) enables a significant acceleration of light field generation while maintaining rendering quality. Based on this insight, we introduce EffLiFe, a novel light field optimization method, which leverages the proposed Hierarchical Sparse Gradient Descent (HSGD) to produce high-quality light fields from sparse view images in real time. Technically, the coarse MPI of a scene is first generated using a 3D CNN, and it is further sparsely optimized by focusing only on important MPI gradients in a few iterations. Nevertheless, relying solely on optimization can lead to artifacts at occlusion boundaries. Therefore, we propose an occlusion-aware iterative refinement module that removes visual artifacts in occluded regions by iteratively filtering the input. Extensive experiments demonstrate that our method achieves comparable visual quality while being 100x faster on average than state-of-the-art offline methods and delivering better performance (about 2 dB higher in PSNR) compared to other online approaches.

Randomized experiments (REs) are the cornerstone for treatment effect evaluation. However, due to practical considerations, REs may encounter difficulty recruiting sufficient patients. External controls (ECs) can supplement REs to boost estimation efficiency. Yet, there may be incomparability between ECs and concurrent controls (CCs), resulting in misleading treatment effect evaluation. We introduce a novel bias function to measure the difference in the outcome mean functions between ECs and CCs. We show that the ANCOVA model augmented by the bias function for ECs renders a consistent estimator of the average treatment effect, regardless of whether or not the ANCOVA model is correct. To accommodate possibly different structures of the ANCOVA model and the bias function, we propose a double penalty integration estimator (DPIE) with different penalization terms for the two functions. With an appropriate choice of penalty parameters, our DPIE ensures consistency, oracle property, and asymptotic normality even in the presence of model misspecification. DPIE is more efficient than the estimator derived from REs alone, validated through theoretical and experimental results.

Decision tree learning is increasingly being used for pointwise inference. Important applications include causal heterogenous treatment effects and dynamic policy decisions, as well as conditional quantile regression and design of experiments, where tree estimation and inference is conducted at specific values of the covariates. In this paper, we call into question the use of decision trees (trained by adaptive recursive partitioning) for such purposes by demonstrating that they can fail to achieve polynomial rates of convergence in uniform norm, even with pruning. Instead, the convergence may be poly-logarithmic or, in some important special cases, such as honest regression trees, fail completely. We show that random forests can remedy the situation, turning poor performing trees into nearly optimal procedures, at the cost of losing interpretability and introducing two additional tuning parameters. The two hallmarks of random forests, subsampling and the random feature selection mechanism, are seen to each distinctively contribute to achieving nearly optimal performance for the model class considered.

In many applications in biology, engineering and economics, identifying similarities and differences between distributions of data from complex processes requires comparing finite categorical samples of discrete counts. Statistical divergences quantify the difference between two distributions. However, their estimation is very difficult and empirical methods often fail, especially when the samples are small. We develop a Bayesian estimator of the Kullback-Leibler divergence between two probability distributions that makes use of a mixture of Dirichlet priors on the distributions being compared. We study the properties of the estimator on two examples: probabilities drawn from Dirichlet distributions, and random strings of letters drawn from Markov chains. We extend the approach to the squared Hellinger divergence. Both estimators outperform other estimation techniques, with better results for data with a large number of categories and for higher values of divergences.

Kernel survival analysis models estimate individual survival distributions with the help of a kernel function, which measures the similarity between any two data points. Such a kernel function can be learned using deep kernel survival models. In this paper, we present a new deep kernel survival model called a survival kernet, which scales to large datasets in a manner that is amenable to model interpretation and also theoretical analysis. Specifically, the training data are partitioned into clusters based on a recently developed training set compression scheme for classification and regression called kernel netting that we extend to the survival analysis setting. At test time, each data point is represented as a weighted combination of these clusters, and each such cluster can be visualized. For a special case of survival kernets, we establish a finite-sample error bound on predicted survival distributions that is, up to a log factor, optimal. Whereas scalability at test time is achieved using the aforementioned kernel netting compression strategy, scalability during training is achieved by a warm-start procedure based on tree ensembles such as XGBoost and a heuristic approach to accelerating neural architecture search. On four standard survival analysis datasets of varying sizes (up to roughly 3 million data points), we show that survival kernets are highly competitive compared to various baselines tested in terms of time-dependent concordance index. Our code is available at: //github.com/georgehc/survival-kernets

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

北京阿比特科技有限公司