We consider the fixed-budget best arm identification problem where the goal is to find the arm of the largest mean with a fixed number of samples. It is known that the probability of misidentifying the best arm is exponentially small to the number of rounds. However, limited characterizations have been discussed on the rate (exponent) of this value. In this paper, we characterize the minimax optimal rate as a result of an optimization over all possible parameters. We introduce two rates, $R^{\mathrm{go}}$ and $R^{\mathrm{go}}_{\infty}$, corresponding to lower bounds on the probability of misidentification, each of which is associated with a proposed algorithm. The rate $R^{\mathrm{go}}$ is associated with $R^{\mathrm{go}}$-tracking, which can be efficiently implemented by a neural network and is shown to outperform existing algorithms. However, this rate requires a nontrivial condition to be achievable. To address this issue, we introduce the second rate $R^{\mathrm{go}}_\infty$. We show that this rate is indeed achievable by introducing a conceptual algorithm called delayed optimal tracking (DOT).
The focus of this letter is on the reduction of the large pilot overhead in orthogonal frequency division multiplexing (OFDM) based massive multiple-input multiple-output (MIMO) systems. We propose a novel joint channel estimation and equalization technique that requires only one pilot subcarrier, reducing the pilot overhead by orders of magnitude. We take advantage of the coherent bandwidth spanning over multiple subcarrier bands. This allows for a band of subcarriers to be equalized with the channel frequency response (CFR) at a single subcarrier. Subsequently, the detected data symbols are considered as virtual pilots, and their CFRs are updated without additional pilot overhead. Thereafter, the remaining channel estimation and equalization can be performed in a sliding manner. With this approach, we use multiple channel estimates to equalize the data at each subcarrier. This allows us to take advantage of frequency diversity and improve the detection performance. Finally, we corroborate the above claims through extensive numerical analysis, showing the superior performance of our proposed technique compared to conventional methods.
The paper addresses the problem of time offset synchronization in the presence of temperature variations, which lead to a non-Gaussian environment. In this context, regular Kalman filtering reveals to be suboptimal. A functional optimization approach is developed in order to approximate optimal estimation of the clock offset between master and slave. A numerical approximation is provided to this aim, based on regular neural network training. Other heuristics are provided as well, based on spline regression. An extensive performance evaluation highlights the benefits of the proposed techniques, which can be easily generalized to several clock synchronization protocols and operating environments.
Parallel evolutionary algorithms (PEAs) have been studied for reducing the execution time of evolutionary algorithms by utilizing parallel computing. An asynchronous PEA (APEA) is a scheme of PEAs that increases computational efficiency by generating a new solution immediately after a solution evaluation completes without the idling time of computing nodes. However, because APEA gives more search opportunities to solutions with shorter evaluation times, the evaluation time bias of solutions negatively affects the search performance. To overcome this drawback, this paper proposes a new parent selection method to reduce the effect of evaluation time bias in APEAs. The proposed method considers the search frequency of solutions and selects the parent solutions so that the search progress in the population is uniform regardless of the evaluation time bias. This paper conducts experiments on multi-objective optimization problems that simulate the evaluation time bias. The experiments use NSGA-III, a well-known multi-objective evolutionary algorithm, and compare the proposed method with the conventional synchronous/asynchronous parallelization. The experimental results reveal that the proposed method can reduce the effect of the evaluation time bias while reducing the computing time of the parallel NSGA-III.
In recent years there has been growing attention to interpretable machine learning models which can give explanatory insights on their behavior. Thanks to their interpretability, decision trees have been intensively studied for classification tasks, and due to the remarkable advances in mixed-integer programming (MIP), various approaches have been proposed to formulate the problem of training an Optimal Classification Tree (OCT) as a MIP model. We present a novel mixed-integer quadratic formulation for the OCT problem, which exploits the generalization capabilities of Support Vector Machines for binary classification. Our model, denoted as Margin Optimal Classification Tree (MARGOT), encompasses the use of maximum margin multivariate hyperplanes nested in a binary tree structure. To enhance the interpretability of our approach, we analyse two alternative versions of MARGOT, which include feature selection constraints inducing local sparsity of the hyperplanes. First, MARGOT has been tested on non-linearly separable synthetic datasets in 2-dimensional feature space to provide a graphical representation of the maximum margin approach. Finally, the proposed models have been tested on benchmark datasets from the UCI repository. The MARGOT formulation turns out to be easier to solve than other OCT approaches, and the generated tree better generalizes on new observations. The two interpretable versions are effective in selecting the most relevant features and maintaining good prediction quality.
Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{//github.com/SDS-Lab/ROT-Pooling}.
The performance of decision policies and prediction models often deteriorates when applied to environments different from the ones seen during training. To ensure reliable operation, we propose and analyze the stability of a system under distribution shift, which is defined as the smallest change in the underlying environment that causes the system's performance to deteriorate beyond a permissible threshold. In contrast to standard tail risk measures and distributionally robust losses that require the specification of a plausible magnitude of distribution shift, the stability measure is defined in terms of a more intuitive quantity: the level of acceptable performance degradation. We develop a minimax optimal estimator of stability and analyze its convergence rate, which exhibits a fundamental phase shift behavior. Our characterization of the minimax convergence rate shows that evaluating stability against large performance degradation incurs a statistical cost. Empirically, we demonstrate the practical utility of our stability framework by using it to compare system designs on problems where robustness to distribution shift is critical.
Online advertising has recently grown into a highly competitive and complex multi-billion-dollar industry, with advertisers bidding for ad slots at large scales and high frequencies. This has resulted in a growing need for efficient "auto-bidding" algorithms that determine the bids for incoming queries to maximize advertisers' targets subject to their specified constraints. This work explores efficient online algorithms for a single value-maximizing advertiser under an increasingly popular constraint: Return-on-Spend (RoS). We quantify efficiency in terms of regret relative to the optimal algorithm, which knows all queries a priori. We contribute a simple online algorithm that achieves near-optimal regret in expectation while always respecting the specified RoS constraint when the input sequence of queries are i.i.d. samples from some distribution. We also integrate our results with the previous work of Balseiro, Lu, and Mirrokni [BLM20] to achieve near-optimal regret while respecting both RoS and fixed budget constraints. Our algorithm follows the primal-dual framework and uses online mirror descent (OMD) for the dual updates. However, we need to use a non-canonical setup of OMD, and therefore the classic low-regret guarantee of OMD, which is for the adversarial setting in online learning, no longer holds. Nonetheless, in our case and more generally where low-regret dynamics are applied in algorithm design, the gradients encountered by OMD can be far from adversarial but influenced by our algorithmic choices. We exploit this key insight to show our OMD setup achieves low regret in the realm of our algorithm.
We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.