Computing empirical Wasserstein distance in the independence test is an optimal transport (OT) problem with a special structure. This observation inspires us to study a special type of OT problem and propose a modified Hungarian algorithm to solve it exactly. For an OT problem involving two marginals with $m$ and $n$ atoms ($m\geq n$), respectively, the computational complexity of the proposed algorithm is $O(m^2n)$. Computing the empirical Wasserstein distance in the independence test requires solving this special type of OT problem, where $m=n^2$. The associated computational complexity of the proposed algorithm is $O(n^5)$, while the order of applying the classic Hungarian algorithm is $O(n^6)$. In addition to the aforementioned special type of OT problem, it is shown that the modified Hungarian algorithm could be adopted to solve a wider range of OT problems. Broader applications of the proposed algorithm are discussed -- solving the one-to-many and the many-to-many assignment problems. Numerical experiments are conducted to validate our theoretical results. The experiment results demonstrate that the proposed modified Hungarian algorithm compares favorably with the Hungarian algorithm and the well-known Sinkhorn algorithm.
This letter concerns optimal power transmission line inspection formulated as a proposed generalization of the traveling salesman problem for a multi-route one-depot scenario. The problem is formulated for an inspection vehicle with a limited travel budget. Therefore, the solution can be composed of multiple runs to provide full coverage of the given power lines. Besides, the solution indicates how many vehicles can perform the inspection in a single run. The optimal solution of the problem is solved by the proposed Integer Linear Programming (ILP) formulation, which is, however, very computationally demanding. Therefore, the computational requirements are addressed by the combinatorial metaheuristic. The employed greedy randomized adaptive search procedure is significantly less demanding while providing competitive solutions and scales better with the problem size than the ILP-based approach. The proposed formulation and algorithms are demonstrated in a real-world scenario to inspect power line segments at the electrical substation.
Safe Interval Path Planning (SIPP) is a powerful algorithm for solving single-agent pathfinding problem when the agent is confined to a graph and certain vertices/edges of this graph are blocked at certain time intervals due to dynamic obstacles that populate the environment. Original SIPP algorithm relies on the assumption that the agent is able to stop instantaneously. However, this assumption often does not hold in practice, e.g. a mobile robot moving with a cruising speed is not able to stop immediately but rather requires gradual deceleration to a full stop that takes time. In other words, the robot is subject to kinodynamic constraints. Unfortunately, as we show in this work, in such a case original SIPP is incomplete. To this end, we introduce a novel variant of SIPP that is provably complete and optimal for planning with acceleration/deceleration. In the experimental evaluation we show that the key property of the original SIPP still holds for the modified version -- it performs much less expansions compared to A* and, as a result, is notably faster.
The Shapley value is arguably the most popular approach for assigning a meaningful contribution value to players in a cooperative game, which has recently been used intensively in various areas of machine learning, most notably in explainable artificial intelligence. The meaningfulness is due to axiomatic properties that only the Shapley value satisfies, which, however, comes at the expense of an exact computation growing exponentially with the number of agents. Accordingly, a number of works are devoted to the efficient approximation of the Shapley values, all of which revolve around the notion of an agent's marginal contribution. In this paper, we propose with SVARM and Stratified SVARM two parameter-free and domain-independent approximation algorithms based on a representation of the Shapley value detached from the notion of marginal contributions. We prove unmatched theoretical guarantees regarding their approximation quality and provide satisfying empirical results.
Probabilistic sensitivity analysis identifies the influential uncertain input to guide decision-making. We propose a general sensitivity framework with respect to the input distribution parameters that unifies a wide range of sensitivity measures, including information theoretical metrics such as the Fisher information. The framework is derived analytically via a constrained maximization and the sensitivity analysis is reformulated into an eigenvalue problem. There are only two main steps to implement the sensitivity framework utilising the likelihood ratio/score function method, a Monte Carlo type sampling followed by solving an eigenvalue equation. The resulting eigenvectors then provide the directions for simultaneous variations of the input parameters and guide the focus to perturb uncertainty the most. Not only is it conceptually simple, but numerical examples demonstrate that the proposed framework also provides new sensitivity insights, such as the combined sensitivity of multiple correlated uncertainty metrics, robust sensitivity analysis with an entropic constraint, and approximation of deterministic sensitivities. Three different examples, ranging from a simple cantilever beam to an offshore marine riser, are used to demonstrate the potential applications of the proposed sensitivity framework to applied mechanics problems.
When estimating causal effects, it is important to assess external validity, i.e., determine how useful a given study is to inform a practical question for a specific target population. One challenge is that the covariate distribution in the population underlying a study may be different from that in the target population. If some covariates are effect modifiers, the average treatment effect (ATE) may not generalize to the target population. To tackle this problem, we propose new methods to generalize or transport the ATE from a source population to a target population, in the case where the source and target populations have different sets of covariates. When the ATE in the target population is identified, we propose new doubly robust estimators and establish their rates of convergence and limiting distributions. Under regularity conditions, the doubly robust estimators provably achieve the efficiency bound and are locally asymptotic minimax optimal. A sensitivity analysis is provided when the identification assumptions fail. Simulation studies show the advantages of the proposed doubly robust estimator over simple plug-in estimators. Importantly, we also provide minimax lower bounds and higher-order estimators of the target functionals. The proposed methods are applied in transporting causal effects of dietary intake on adverse pregnancy outcomes from an observational study to the whole U.S. female population.
In the assignment problem, a set of items must be allocated to unit-demand agents who express ordinal preferences (rankings) over the items. In the assignment problem with priorities, agents with higher priority are entitled to their preferred goods with respect to lower priority agents. A priority can be naturally represented as a ranking and an uncertain priority as a distribution over rankings. For example, this models the problem of assigning student applicants to university seats or job applicants to job openings when the admitting body is uncertain about the true priority over applicants. This uncertainty can express the possibility of bias in the generation of the priority ranking. We believe we are the first to explicitly formulate and study the assignment problem with uncertain priorities. We introduce two natural notions of fairness in this problem: stochastic envy-freeness (SEF) and likelihood envy-freeness (LEF). We show that SEF and LEF are incompatible and that LEF is incompatible with ordinal efficiency. We describe two algorithms, Cycle Elimination (CE) and Unit-Time Eating (UTE) that satisfy ordinal efficiency (a form of ex-ante Pareto optimality) and SEF; the well known random serial dictatorship algorithm satisfies LEF and the weaker efficiency guarantee of ex-post Pareto optimality. We also show that CE satisfies a relaxation of LEF that we term 1-LEF which applies only to certain comparisons of priority, while UTE satisfies a version of proportional allocations with ranks. We conclude by demonstrating how a mediator can model a problem of school admission in the face of bias as an assignment problem with uncertain priority.
This paper links sizes of model classes to the minimum lengths of their defining formulas, that is, to their description complexities. Limiting to models with a fixed domain of size n, we study description complexities with respect to the extension of propositional logic with the ability to count assignments. This logic, called GMLU, can alternatively be conceived as graded modal logic over Kripke models with the universal accessibility relation. While GMLU is expressively complete for defining multisets of assignments, we also investigate its fragments GMLU(d) that can count only up to the integer threshold d. We focus in particular on description complexities of equivalence classes of GMLU(d). We show that, in restriction to a poset of type realizations, the order of the equivalence classes based on size is identical to the order based on description complexities. This also demonstrates a monotone connection between Boltzmann entropies of model classes and description complexities. Furthermore, we characterize how the relation between domain size n and counting threshold d determines whether or not there exists a dominating class, which essentially means a model class with limit probability one. To obtain our results, we prove new estimates on r-associated Stirling numbers. As another crucial tool, we show that model classes split into two distinct cases in relation to their description complexity.
Gradient-based methods for value estimation in reinforcement learning have favorable stability properties, but they are typically much slower than Temporal Difference (TD) learning methods. We study the root causes of this slowness and show that Mean Square Bellman Error (MSBE) is an ill-conditioned loss function in the sense that its Hessian has large condition-number. To resolve the adverse effect of poor conditioning of MSBE on gradient based methods, we propose a low complexity batch-free proximal method that approximately follows the Gauss-Newton direction and is asymptotically robust to parameterization. Our main algorithm, called RANS, is efficient in the sense that it is significantly faster than the residual gradient methods while having almost the same computational complexity, and is competitive with TD on the classic problems that we tested.
Assortment optimization has received active explorations in the past few decades due to its practical importance. Despite the extensive literature dealing with optimization algorithms and latent score estimation, uncertainty quantification for the optimal assortment still needs to be explored and is of great practical significance. Instead of estimating and recovering the complete optimal offer set, decision-makers may only be interested in testing whether a given property holds true for the optimal assortment, such as whether they should include several products of interest in the optimal set, or how many categories of products the optimal set should include. This paper proposes a novel inferential framework for testing such properties. We consider the widely adopted multinomial logit (MNL) model, where we assume that each customer will purchase an item within the offered products with a probability proportional to the underlying preference score associated with the product. We reduce inferring a general optimal assortment property to quantifying the uncertainty associated with the sign change point detection of the marginal revenue gaps. We show the asymptotic normality of the marginal revenue gap estimator, and construct a maximum statistic via the gap estimators to detect the sign change point. By approximating the distribution of the maximum statistic with multiplier bootstrap techniques, we propose a valid testing procedure. We also conduct numerical experiments to assess the performance of our method.
Modern data aggregation often takes the form of a platform collecting data from a network of users. More than ever, these users are now requesting that the data they provide is protected with a guarantee of privacy. This has led to the study of optimal data acquisition frameworks, where the optimality criterion is typically the maximization of utility for the agent trying to acquire the data. This involves determining how to allocate payments to users for the purchase of their data at various privacy levels. The main goal of this paper is to characterize a fair amount to pay users for their data at a given privacy level. We propose an axiomatic definition of fairness, analogous to the celebrated Shapley value. Two concepts for fairness are introduced. The first treats the platform and users as members of a common coalition and provides a complete description of how to divide the utility among the platform and users. In the second concept, fairness is defined only among users, leading to a potential fairness-constrained mechanism design problem for the platform. We consider explicit examples involving private heterogeneous data and show how these notions of fairness can be applied. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints.