亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study presents a novel approach for modeling and simulating human-vehicle interactions in order to examine the effects of automated driving systems (ADS) on driving performance and driver control workload. Existing driver-ADS interaction studies have relied on simulated or real-world human driver experiments that are limited in providing objective evaluation of the dynamic interactions and control workloads on the driver. Our approach leverages an integrated human model-based active driving system (HuMADS) to simulate the dynamic interaction between the driver model and the haptic-based ADS during a vehicle overtaking task. Two driver arm-steering models were developed for both tense and relaxed human driver conditions and validated against experimental data. We conducted a simulation study to evaluate the effects of three different haptic shared control conditions (based on the presence and type of control conflict) on overtaking task performance and driver workloads. We found that No Conflict shared control scenarios result in improved driving performance and reduced control workloads, while Conflict scenarios result in unsafe maneuvers and increased workloads. These findings, which are consistent with experimental studies, demonstrate the potential for our approach to improving future ADS design for safer driver assistance systems.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Extensibility · 可辨認的 · Performer · Analysis ·
2022 年 12 月 9 日

Parametric timed automata are a powerful formalism for reasoning on concurrent real-time systems with unknown or uncertain timing constants. Reducing their state space is a significant way to reduce the inherently large analysis times. We present here different merging reduction techniques based on convex union of constraints (parametric zones), allowing to decrease the number of states while preserving the correctness of verification and synthesis results. We perform extensive experiments, and identify the best heuristics in practice, bringing a significant decrease in the computation time on a benchmarks library.

Inferring reward functions from human behavior is at the center of value alignment - aligning AI objectives with what we, humans, actually want. But doing so relies on models of how humans behave given their objectives. After decades of research in cognitive science, neuroscience, and behavioral economics, obtaining accurate human models remains an open research topic. This begs the question: how accurate do these models need to be in order for the reward inference to be accurate? On the one hand, if small errors in the model can lead to catastrophic error in inference, the entire framework of reward learning seems ill-fated, as we will never have perfect models of human behavior. On the other hand, if as our models improve, we can have a guarantee that reward accuracy also improves, this would show the benefit of more work on the modeling side. We study this question both theoretically and empirically. We do show that it is unfortunately possible to construct small adversarial biases in behavior that lead to arbitrarily large errors in the inferred reward. However, and arguably more importantly, we are also able to identify reasonable assumptions under which the reward inference error can be bounded linearly in the error in the human model. Finally, we verify our theoretical insights in discrete and continuous control tasks with simulated and human data.

This note complements the upcoming paper "One-Way Ticket to Las Vegas and the Quantum Adversary" by Belovs and Yolcu, to be presented at QIP 2023. I develop the ideas behind the adversary bound - universal algorithm duality therein in a different form, using the same perspective as Barnum-Saks-Szegedy in which query algorithms are defined as sequences of feasible reduced density matrices rather than sequences of unitaries. This form may be faster to understand for a general quantum information audience: It avoids defining the "unidirectional relative $\gamma_{2}$-bound" and relating it to query algorithms explicitly. This proof is also more general because the lower bound (and universal query algorithm) apply to a class of optimal control problems rather than just query problems. That is in addition to the advantages to be discussed in Belovs-Yolcu, namely the more elementary algorithm and correctness proof that avoids phase estimation and spectral analysis, allows for limited treatment of noise, and removes another $\Theta(\log(1/\epsilon))$ factor from the runtime compared to the previous discrete-time algorithm.

In the cybersecurity setting, defenders are often at the mercy of their detection technologies and subject to the information and experiences that individual analysts have. In order to give defenders an advantage, it is important to understand an attacker's motivation and their likely next best action. As a first step in modeling this behavior, we introduce a security game framework that simulates interplay between attackers and defenders in a noisy environment, focusing on the factors that drive decision making for attackers and defenders in the variants of the game with full knowledge and observability, knowledge of the parameters but no observability of the state (``partial knowledge''), and zero knowledge or observability (``zero knowledge''). We demonstrate the importance of making the right assumptions about attackers, given significant differences in outcomes. Furthermore, there is a measurable trade-off between false-positives and true-positives in terms of attacker outcomes, suggesting that a more false-positive prone environment may be acceptable under conditions where true-positives are also higher.

Based on the principle of onion routing, the Tor network achieves anonymity for its users by relaying user data over a series of intermediate relays. This approach makes congestion control in the network a challenging task. As of today, this results in higher latencies due to considerable backlog as well as unfair data rate allocation. In this paper, we present a concept study of PredicTor, a novel approach to congestion control that tackles clogged overlay networks. Unlike traditional approaches, it is built upon the idea of distributed model predictive control, a recent advancement from the area of control theory. PredicTor is tailored to minimizing latency in the network and achieving max-min fairness. We contribute a thorough evaluation of its behavior in both toy scenarios to assess the optimizer and complex networks to assess its potential. For this, we conduct large-scale simulation studies and compare PredicTor to existing congestion control mechanisms in Tor. We show that PredicTor is highly effective in reducing latency and realizing fair rate allocations. In addition, we strive to bring the ideas of modern control theory to the networking community, enabling the development of improved, future congestion control. We therefore demonstrate benefits and issues alike with this novel research direction.

Agent-based model (ABM) has been widely used to study infectious disease transmission by simulating behaviors and interactions of autonomous individuals called agents. In the ABM, agent states, for example infected or susceptible, are assigned according to a set of simple rules, and a complex dynamics of disease transmission is described by the collective states of agents over time. Despite the flexibility in real-world modeling, ABMs have received less attention by statisticians because of the intractable likelihood functions which lead to difficulty in estimating parameters and quantifying uncertainty around model outputs. To overcome this limitation, we propose to treat the entire system as a Hidden Markov Model and develop the ABM for infectious disease transmission within the Bayesian framework. The hidden states in the model are represented by individual agent's states over time. We estimate the hidden states and the parameters associated with the model by applying particle Markov Chain Monte Carlo algorithm. Performance of the approach for parameter recovery and prediction along with sensitivity to prior assumptions are evaluated under various simulation conditions. Finally, we apply the proposed approach to the study of COVID-19 outbreak on Diamond Princess cruise ship and examine the differences in transmission by key demographic characteristics, while considering different network structures and the limitations of COVID-19 testing in the cruise.

Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to $90^\circ$. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90$^\circ$, angular speeds up to 750~deg/s, and accelerations up to 10~m/s$^2$.

Accomplishing safe and efficient driving is one of the predominant challenges in the controller design of connected automated vehicles (CAVs). It is often more convenient to address these goals separately and integrate the resulting controllers. In this study, we propose a controller integration scheme to fuse performance-based controllers and safety-oriented controllers safely for the longitudinal motion of a CAV. The resulting structure is compatible with a large class of controllers, and offers flexibility to design each controller individually without affecting the performance of the others. We implement the proposed safe integration scheme on a connected automated truck using an optimal-in-energy controller and a safety-oriented connected cruise controller. We validate the premise of the safe integration through experiments with a full-scale truck in two scenarios: a controlled experiment on a test track and a real-world experiment on a public highway. In both scenarios, we achieve energy efficient driving without violating safety.

Data synthesis is a privacy enhancing technology aiming to produce realistic and timely data when real data is hard to obtain. Utility of synthetic data generators (SDGs) has been investigated through different utility metrics. These metrics have been found to generate conflicting conclusions making direct comparison of SDGs surprisingly difficult. Moreover, prior research found no correlation between popular metrics, concluding they tackle different utility-dimensions. This paper aggregates four popular utility metrics (representing different utility dimensions) into one using principal-component-analysis and checks whether the new measure can generate synthetic data that perform well in real-life. The new measure is used to compare four well-recognized SDGs.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

北京阿比特科技有限公司