亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Factor models are widely used in the analysis of high-dimensional data in several fields of research. Estimating a factor model, in particular its covariance matrix, from partially observed data vectors is very challenging. In this work, we show that when the data are structurally incomplete, the factor model likelihood function can be decomposed into the product of the likelihood functions of multiple partial factor models relative to different subsets of data. If these multiple partial factor models are linked together by common parameters, then we can obtain complete maximum likelihood estimates of the factor model parameters and thereby the full covariance matrix. We call this framework Linked Factor Analysis (LINFA). LINFA can be used for covariance matrix completion, dimension reduction, data completion, and graphical dependence structure recovery. We propose an efficient Expectation-Maximization algorithm for maximum likelihood estimation, accelerated by a novel group vertex tessellation (GVT) algorithm which identifies a minimal partition of the vertex set to implement an efficient optimization in the maximization steps. We illustrate our approach in an extensive simulation study and in the analysis of calcium imaging data collected from mouse visual cortex.

相關內容

The number of sampling methods could be daunting for a practitioner looking to cast powerful machine learning methods to their specific problem. This paper takes a theoretical stance to review and organize many sampling approaches in the ``generative modeling'' setting, where one wants to generate new data that are similar to some training examples. By revealing links between existing methods, it might prove useful to overcome some of the current challenges in sampling with diffusion models, such as long inference time due to diffusion simulation, or the lack of diversity in generated samples.

This paper considers both the least squares and quasi-maximum likelihood estimation for the recently proposed scalable ARMA model, a parametric infinite-order vector AR model, and their asymptotic normality is also established. It makes feasible the inference on this computationally efficient model, especially for financial time series. An efficient block coordinate descent algorithm is further introduced to search for estimates, and a Bayesian information criterion is suggested for model selection. Simulation experiments are conducted to illustrate their finite sample performance, and a real application on six macroeconomic indicators illustrates the usefulness of the proposed methodology.

Differential privacy is often studied under two different models of neighboring datasets: the add-remove model and the swap model. While the swap model is frequently used in the academic literature to simplify analysis, many practical applications rely on the more conservative add-remove model, where obtaining tight results can be difficult. Here, we study the problem of one-dimensional mean estimation under the add-remove model. We propose a new algorithm and show that it is min-max optimal, achieving the best possible constant in the leading term of the mean squared error for all $\epsilon$, and that this constant is the same as the optimal algorithm under the swap model. These results show that the add-remove and swap models give nearly identical errors for mean estimation, even though the add-remove model cannot treat the size of the dataset as public information. We also demonstrate empirically that our proposed algorithm yields at least a factor of two improvement in mean squared error over algorithms frequently used in practice. One of our main technical contributions is a new hour-glass mechanism, which might be of independent interest in other scenarios.

A major challenge in computed tomography is reconstructing objects from incomplete data. An increasingly popular solution for these problems is to incorporate deep learning models into reconstruction algorithms. This study introduces a novel approach by integrating a Fourier neural operator (FNO) into the Filtered Backprojection (FBP) reconstruction method, yielding the FNO back projection (FNO-BP) network. We employ moment conditions for sinogram extrapolation to assist the model in mitigating artefacts from limited data. Notably, our deep learning architecture maintains a runtime comparable to classical filtered back projection (FBP) reconstructions, ensuring swift performance during both inference and training. We assess our reconstruction method in the context of the Helsinki Tomography Challenge 2022 and also compare it against regular FBP methods.

Local variable selection aims to discover localized effects by assessing the impact of covariates on outcomes within specific regions defined by other covariates. We outline some challenges of local variable selection in the presence of non-linear relationships and model misspecification. Specifically, we highlight a potential drawback of common semi-parametric methods: even slight model misspecification can result in a high rate of false positives. To address these shortcomings, we propose a methodology based on orthogonal cut splines that achieves consistent local variable selection in high-dimensional scenarios. Our approach offers simplicity, handles both continuous and discrete covariates, and provides theory for high-dimensional covariates and model misspecification. We discuss settings with either independent or dependent data. Our proposal allows including adjustment covariates that do not undergo selection, enhancing flexibility in modeling complex scenarios. We illustrate its application in simulation studies with both independent and functional data, as well as with two real datasets. One dataset evaluates salary gaps associated with discrimination factors at different ages, while the other examines the effects of covariates on brain activation over time. The approach is implemented in the R package mombf.

Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, researchers often employ their domain expertise to select a specific range of wavevectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through Fourier analysis at a selected range of wavevectors. We first show that DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs information at all wavevectors, therefore eliminating the need to select the range of wavevectors. Furthermore, we substantially reduce the computational cost by utilizing the generalized Schur algorithm for Toeplitz covariances without approximation. Simulated studies validate that AIUQ significantly improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These outcomes collectively underscore AIUQ's versatility to capture system dynamics in an efficient and automated manner.

Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.

Complex interval arithmetic is a powerful tool for the analysis of computational errors. The naturally arising rectangular, polar, and circular (together called primitive) interval types are not closed under simple arithmetic operations, and their use yields overly relaxed bounds. The later introduced polygonal type, on the other hand, allows for arbitrarily precise representation of the above operations for a higher computational cost. We propose the polyarcular interval type as an effective extension of the previous types. The polyarcular interval can represent all primitive intervals and most of their arithmetic combinations precisely and has an approximation capability competing with that of the polygonal interval. In particular, in antenna tolerance analysis it can achieve perfect accuracy for lower computational cost then the polygonal type, which we show in a relevant case study. In this paper, we present a rigorous analysis of the arithmetic properties of all five interval types, involving a new algebro-geometric method of boundary analysis.

In a regression model with multiple response variables and multiple explanatory variables, if the difference of the mean vectors of the response variables for different values of explanatory variables is always in the direction of the first principal eigenvector of the covariance matrix of the response variables, then it is called a multivariate allometric regression model. This paper studies the estimation of the first principal eigenvector in the multivariate allometric regression model. A class of estimators that includes conventional estimators is proposed based on weighted sum-of-squares matrices of regression sum-of-squares matrix and residual sum-of-squares matrix. We establish an upper bound of the mean squared error of the estimators contained in this class, and the weight value minimizing the upper bound is derived. Sufficient conditions for the consistency of the estimators are discussed in weak identifiability regimes under which the difference of the largest and second largest eigenvalues of the covariance matrix decays asymptotically and in ``large $p$, large $n$" regimes, where $p$ is the number of response variables and $n$ is the sample size. Several numerical results are also presented.

Diffusion models have demonstrated remarkable performance in generation tasks. Nevertheless, explaining the diffusion process remains challenging due to it being a sequence of denoising noisy images that are difficult for experts to interpret. To address this issue, we propose the three research questions to interpret the diffusion process from the perspective of the visual concepts generated by the model and the region where the model attends in each time step. We devise tools for visualizing the diffusion process and answering the aforementioned research questions to render the diffusion process human-understandable. We show how the output is progressively generated in the diffusion process by explaining the level of denoising and highlighting relationships to foundational visual concepts at each time step through the results of experiments with various visual analyses using the tools. Throughout the training of the diffusion model, the model learns diverse visual concepts corresponding to each time-step, enabling the model to predict varying levels of visual concepts at different stages. We substantiate our tools using Area Under Cover (AUC) score, correlation quantification, and cross-attention mapping. Our findings provide insights into the diffusion process and pave the way for further research into explainable diffusion mechanisms.

北京阿比特科技有限公司