亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hikers and hillwalkers typically use the gradient in the direction of travel (walking slope) as the main variable in established methods for predicting walking time (via the walking speed) along a route. Research into fell-running has suggested further variables which may improve speed algorithms in this context; the gradient of the terrain (hill slope) and the level of terrain obstruction. Recent improvements in data availability, as well as widespread use of GPS tracking now make it possible to explore these variables in a walking speed model at a sufficient scale to test statistical significance. We tested various established models used to predict walking speed against public GPS data from almost 88,000 km of UK walking / hiking tracks. Tracks were filtered to remove breaks and non-walking sections. A new generalised linear model (GLM) was then used to predict walking speeds. Key differences between the GLM and established rules were that the GLM considered the gradient of the terrain (hill slope) irrespective of walking slope, as well as the terrain type and level of terrain obstruction in off-road travel. All of these factors were shown to be highly significant, and this is supported by a lower root-mean-square-error compared to existing functions. We also observed an increase in RMSE between the GLM and established methods as hill slope increases, further supporting the importance of this variable.

相關內容

Ambisonics is a scene-based spatial audio format that has several useful features compared to object-based formats, such as efficient whole scene rotation and versatility. However, it does not provide direct access to the individual source signals, so that these have to be separated from the mixture when required. Typically, this is done with linear spherical harmonics (SH) beamforming. In this paper, we explore deep-learning-based source separation on static Ambisonics mixtures. In contrast to most source separation approaches, which separate a fixed number of sources of specific sound types, we focus on separating arbitrary sound from specific directions. Specifically, we propose three operating modes that combine a source separation neural network with SH beamforming: refinement, implicit, and mixed mode. We show that a neural network can implicitly associate conditioning directions with the spatial information contained in the Ambisonics scene to extract specific sources. We evaluate the performance of the three proposed approaches and compare them to SH beamforming on musical mixtures generated with the musdb18 dataset, as well as with mixtures generated with the FUSS dataset for universal source separation, under both anechoic and room conditions. Results show that the proposed approaches offer improved separation performance and spatial selectivity compared to conventional SH beamforming.

The recent popularity of large language models (LLMs) has brought a significant impact to boundless fields, particularly through their open-ended ecosystem such as the APIs, open-sourced models, and plugins. However, with their widespread deployment, there is a general lack of research that thoroughly discusses and analyzes the potential risks concealed. In that case, we intend to conduct a preliminary but pioneering study covering the robustness, consistency, and credibility of LLMs systems. With most of the related literature in the era of LLM uncharted, we propose an automated workflow that copes with an upscaled number of queries/responses. Overall, we conduct over a million queries to the mainstream LLMs including ChatGPT, LLaMA, and OPT. Core to our workflow consists of a data primitive, followed by an automated interpreter that evaluates these LLMs under different adversarial metrical systems. As a result, we draw several, and perhaps unfortunate, conclusions that are quite uncommon from this trendy community. Briefly, they are: (i)-the minor but inevitable error occurrence in the user-generated query input may, by chance, cause the LLM to respond unexpectedly; (ii)-LLMs possess poor consistency when processing semantically similar query input. In addition, as a side finding, we find that ChatGPT is still capable to yield the correct answer even when the input is polluted at an extreme level. While this phenomenon demonstrates the powerful memorization of the LLMs, it raises serious concerns about using such data for LLM-involved evaluation in academic development. To deal with it, we propose a novel index associated with a dataset that roughly decides the feasibility of using such data for LLM-involved evaluation. Extensive empirical studies are tagged to support the aforementioned claims.

In this work, we focus on the Bipartite Stochastic Block Model (BiSBM), a popular model for bipartite graphs with a community structure. We consider the high dimensional setting where the number $n_1$ of type I nodes is far smaller than the number $n_2$ of type II nodes. The recent work of Braun and Tyagi (2022) established a sufficient and necessary condition on the sparsity level $p_{max}$ of the bipartite graph to be able to recover the latent partition of type I nodes. They proposed an iterative method that extends the one proposed by Ndaoud et al. (2022) to achieve this goal. Their method requires a good enough initialization, usually obtained by a spectral method, but empirical results showed that the refinement algorithm doesn't improve much the performance of the spectral method. This suggests that the spectral achieves exact recovery in the same regime as the refinement method. We show that it is indeed the case by providing new entrywise bounds on the eigenvectors of the similarity matrix used by the spectral method. Our analysis extend the framework of Lei (2019) that only applies to symmetric matrices with limited dependencies. As an important technical step, we also derive an improved concentration inequality for similarity matrices.

Link prediction problem has increasingly become prominent in many domains such as social network analyses, bioinformatics experiments, transportation networks, criminal investigations and so forth. A variety of techniques has been developed for link prediction problem, categorized into 1) similarity based approaches which study a set of features to extract similar nodes; 2) learning based approaches which extract patterns from the input data; 3) probabilistic statistical approaches which optimize a set of parameters to establish a model which can best compute formation probability. However, existing literatures lack approaches which utilize strength of each approach by integrating them to achieve a much more productive one. To tackle the link prediction problem, we propose an approach based on the combination of first and second group methods; the existing studied works use just one of these categories. Our two-phase developed method firstly determines new features related to the position and dynamic behavior of nodes, which enforce the approach more efficiency compared to approaches using mere measures. Then, a subspace clustering algorithm is applied to group social objects based on the computed similarity measures which differentiate the strength of clusters; basically, the usage of local and global indices and the clustering information plays an imperative role in our link prediction process. Some extensive experiments held on real datasets including Facebook, Brightkite and HepTh indicate good performances of our proposal method. Besides, we have experimentally verified our approach with some previous techniques in the area to prove the supremacy of ours.

Chest X-rays have been widely used for COVID-19 screening; however, 3D computed tomography (CT) is a more effective modality. We present our findings on COVID-19 severity prediction from chest CT scans using the STOIC dataset. We developed an ensemble deep learning based model that incorporates multiple neural networks to improve predictions. To address data imbalance, we used slicing functions and data augmentation. We further improved performance using test time data augmentation. Our approach which employs a simple yet effective ensemble of deep learning-based models with strong test time augmentations, achieved results comparable to more complex methods and secured the fourth position in the STOIC2021 COVID-19 AI Challenge. Our code is available on online: at: //github.com/aleemsidra/stoic2021- baseline-finalphase-main.

Predictive Maintenance (PdM) methods aim to facilitate the scheduling of maintenance work before equipment failure. In this context, detecting early faults in automated teller machines (ATMs) has become increasingly important since these machines are susceptible to various types of unpredictable failures. ATMs track execution status by generating massive event-log data that collect system messages unrelated to the failure event. Predicting machine failure based on event logs poses additional challenges, mainly in extracting features that might represent sequences of events indicating impending failures. Accordingly, feature learning approaches are currently being used in PdM, where informative features are learned automatically from minimally processed sensor data. However, a gap remains to be seen on how these approaches can be exploited for deriving relevant features from event-log-based data. To fill this gap, we present a predictive model based on a convolutional kernel (MiniROCKET and HYDRA) to extract features from the original event-log data and a linear classifier to classify the sample based on the learned features. The proposed methodology is applied to a significant real-world collected dataset. Experimental results demonstrated how one of the proposed convolutional kernels (i.e. HYDRA) exhibited the best classification performance (accuracy of 0.759 and AUC of 0.693). In addition, statistical analysis revealed that the HYDRA and MiniROCKET models significantly overcome one of the established state-of-the-art approaches in time series classification (InceptionTime), and three non-temporal ML methods from the literature. The predictive model was integrated into a container-based decision support system to support operators in the timely maintenance of ATMs.

Coronal Mass Ejections (CMEs) correspond to dramatic expulsions of plasma and magnetic field from the solar corona into the heliosphere. CMEs are scientifically relevant because they are involved in the physical mechanisms characterizing the active Sun. However, more recently CMEs have attracted attention for their impact on space weather, as they are correlated to geomagnetic storms and may induce the generation of Solar Energetic Particles streams. In this space weather framework, the present paper introduces a physics-driven artificial intelligence (AI) approach to the prediction of CMEs travel time, in which the deterministic drag-based model is exploited to improve the training phase of a cascade of two neural networks fed with both remote sensing and in-situ data. This study shows that the use of physical information in the AI architecture significantly improves both the accuracy and the robustness of the travel time prediction.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司