This paper is concerned with adaptive mesh refinement strategies for the spatial discretization of parabolic problems with dynamic boundary conditions. This includes the characterization of inf-sup stable discretization schemes for a stationary model problem as a preliminary step. Based on an alternative formulation of the system as a partial differential-algebraic equation, we introduce a posteriori error estimators which allow local refinements as well as a special treatment of the boundary. We prove reliability and efficiency of the estimators and illustrate their performance in several numerical experiments.
We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d^2)$ samples, and in spectral norm requires $\Omega(d^{3/2})$ samples, both matching upper bounds up to logarithmic factors. The latter bound verifies the existence of a conjectured statistical gap between the private and the non-private sample complexities for spectral estimation of Gaussian covariances. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha^2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon, 0)$-differential privacy.
In this paper, we consider the contextual variant of the MNL-Bandit problem. More specifically, we consider a dynamic set optimization problem, where a decision-maker offers a subset (assortment) of products to a consumer and observes the response in every round. Consumers purchase products to maximize their utility. We assume that a set of attributes describe the products, and the mean utility of a product is linear in the values of these attributes. We model consumer choice behavior using the widely used Multinomial Logit (MNL) model and consider the decision maker problem of dynamically learning the model parameters while optimizing cumulative revenue over the selling horizon $T$. Though this problem has attracted considerable attention in recent times, many existing methods often involve solving an intractable non-convex optimization problem. Their theoretical performance guarantees depend on a problem-dependent parameter which could be prohibitively large. In particular, existing algorithms for this problem have regret bounded by $O(\sqrt{\kappa d T})$, where $\kappa$ is a problem-dependent constant that can have an exponential dependency on the number of attributes. In this paper, we propose an optimistic algorithm and show that the regret is bounded by $O(\sqrt{dT} + \kappa)$, significantly improving the performance over existing methods. Further, we propose a convex relaxation of the optimization step, which allows for tractable decision-making while retaining the favourable regret guarantee.
The setting of a right-censored random sample subject to contamination is considered. In various fields, expert information is often available and used to overcome the contamination. This paper integrates expert knowledge into the product-limit estimator in two different ways with distinct interpretations. Strong uniform consistency is proved for both cases under certain assumptions on the kind of contamination and the quality of expert information, which sheds light on the techniques and decisions that practitioners may take. The nuances of the techniques are discussed -- also with a view towards semi-parametric estimation -- and they are illustrated using simulated and real-world insurance data.
Deep learning algorithms have recently shown to be a successful tool in estimating parameters of statistical models for which simulation is easy, but likelihood computation is challenging. But the success of these approaches depends on simulating parameters that sufficiently reproduce the observed data, and, at present, there is a lack of efficient methods to produce these simulations. We develop new black-box procedures to estimate parameters of statistical models based only on weak parameter structure assumptions. For well-structured likelihoods with frequent occurrences, such as in time series, this is achieved by pre-training a deep neural network on an extensive simulated database that covers a wide range of data sizes. For other types of complex dependencies, an iterative algorithm guides simulations to the correct parameter region in multiple rounds. These approaches can successfully estimate and quantify the uncertainty of parameters from non-Gaussian models with complex spatial and temporal dependencies. The success of our methods is a first step towards a fully flexible automatic black-box estimation framework.
Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.
Matrix Lie groups are an important class of manifolds commonly used in control and robotics, and the optimization of control policies on these manifolds is a fundamental problem. In this work, we propose a novel approach for trajectory optimization on matrix Lie groups using an augmented Lagrangian-based constrained discrete Differential Dynamic Programming. The method involves lifting the optimization problem to the Lie algebra in the backward pass and retracting back to the manifold in the forward pass. In contrast to previous approaches which only addressed constraint handling for specific classes of matrix Lie groups, the proposed method provides a general approach for nonlinear constraint handling for generic matrix Lie groups. We also demonstrate the effectiveness of the method in handling external disturbances through its application as a Lie-algebraic feedback control policy on SE(3). Experiments show that the approach is able to effectively handle configuration, velocity and input constraints and maintain stability in the presence of external disturbances.
Motivated by crowd-sourcing applications, we consider a model where we have partial observations from a bivariate isotonic n x d matrix with an unknown permutation $\pi$ * acting on its rows. Focusing on the twin problems of recovering the permutation $\pi$ * and estimating the unknown matrix, we introduce a polynomial-time procedure achieving the minimax risk for these two problems, this for all possible values of n, d, and all possible sampling efforts. Along the way, we establish that, in some regimes, recovering the unknown permutation $\pi$ * is considerably simpler than estimating the matrix.
This paper proposes three new approaches for additive functional regression models with functional responses. The first one is a reformulation of the linear regression model, and the last two are on the yet scarce case of additive nonlinear functional regression models. Both proposals are based on extensions of similar models for scalar responses. One of our nonlinear models is based on constructing a Spectral Additive Model (the word "Spectral" refers to the representation of the covariates in an $\mcal{L}_2$ basis), which is restricted (by construction) to Hilbertian spaces. The other one extends the kernel estimator, and it can be applied to general metric spaces since it is only based on distances. We include our new approaches as well as real datasets in an R package. The performances of the new proposals are compared with previous ones, which we review theoretically and practically in this paper. The simulation results show the advantages of the nonlinear proposals and the small loss of efficiency when the simulation scenario is truly linear. Finally, the supplementary material provides a visualization tool for checking the linearity of the relationship between a single covariate and the response.
We have developed efficient parameterized algorithms for the enumeration problems of graphs arising in chemistry. In particular, we have focused on the following problems: enumeration of Kekul\'e structures, computation of Hosoya index, computation of Merrifield-Simmons index, and computation of graph entropy based on matchings and independent sets. All these problems are known to be $\# P$-complete. We have developed FPT algorithms for bounded treewidth and bounded pathwidth for these problems with a better time complexity than the known state-of-the-art in the literature. We have also conducted experiments on the entire PubChem database of chemical compounds and tested our algorithms. We also provide a comparison with naive baseline algorithms for these problems, along with a distribution of treewidth for the chemical compounds available in the PubChem database.
Conditional Neural Processes~(CNPs) formulate distributions over functions and generate function observations with exact conditional likelihoods. CNPs, however, have limited expressivity for high-dimensional observations, since their predictive distribution is factorized into a product of unconstrained (typically) Gaussian outputs. Previously, this could be handled using latent variables or autoregressive likelihood, but at the expense of intractable training and quadratically increased complexity. Instead, we propose calibrating CNPs with an adversarial training scheme besides regular maximum likelihood estimates. Specifically, we train an energy-based model (EBM) with noise contrastive estimation, which enforces EBM to identify true observations from the generations of CNP. In this way, CNP must generate predictions closer to the ground-truth to fool EBM, instead of merely optimizing with respect to the fixed-form likelihood. From generative function reconstruction to downstream regression and classification tasks, we demonstrate that our method fits mainstream CNP members, showing effectiveness when unconstrained Gaussian likelihood is defined, requiring minimal computation overhead while preserving foundation properties of CNPs.