Certifying the positivity of trigonometric polynomials is of first importance for design problems in discrete-time signal processing. It is well known from the Riesz-Fej\'ez spectral factorization theorem that any trigonometric univariate polynomial positive on the unit circle can be decomposed as a Hermitian square with complex coefficients. Here we focus on the case of polynomials with Gaussian integer coefficients, i.e., with real and imaginary parts being integers. We design, analyze and compare, theoretically and practically,three hybrid numeric-symbolic algorithms computing weighted sums of Hermitian squares decompositions for trigonometric univariate polynomials positive on the unit circle with Gaussian coefficients. The numerical steps the first and second algorithm rely on are complex root isolation and semidefinite programming, respectively. An exact sum of Hermitian squares decomposition is obtained thanks to compensation techniques. The third algorithm, also based on complex semidefinite programming, is an adaptation of the rounding and projection algorithm by Peyrl and Parrilo. For all three algorithms, we prove bit complexity and output size estimates that are polynomial in the degree of the input and linear in the maximum bitsize of its coefficients. We compare their performance on randomly chosen benchmarks, and further design a certified finite impulse filter.
Through the use of cutting-edge unsupervised classification techniques from statistics and machine learning, we characterise symptom phenotypes among symptomatic SARS-CoV-2 PCR-positive community cases. We first analyse each dataset in isolation and across age bands, before using methods that allow us to compare multiple datasets. While we observe separation due to the total number of symptoms experienced by cases, we also see a separation of symptoms into gastrointestinal, respiratory and other types, and different symptom co-occurrence patterns at the extremes of age. In this way, we are able to demonstrate the deep structure of symptoms of COVID-19 without usual biases due to study design. This is expected to have implications for the identification and management of community SARS-CoV-2 cases and could be further applied to symptom-based management of other diseases and syndromes.
The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations and for formulating invariant visual operations at higher levels. This paper defines and proves a joint covariance property under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations, which makes it possible to characterize how different types of image transformations interact with each other. Specifically, the derived relations show how the receptive field parameters need to be transformed, in order to match the output from spatio-temporal receptive fields with the underlying spatio-temporal image transformations.
Neufeld and Wu (arXiv:2310.12545) developed a multilevel Picard (MLP) algorithm which can approximately solve general semilinear parabolic PDEs with gradient-dependent nonlinearities, allowing also for coefficient functions of the corresponding PDE to be non-constant. By introducing a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula and identifying the first and second component of the unique fixed-point of the SFPE with the unique viscosity solution of the PDE and its gradient, they proved convergence of their algorithm. However, it remained an open question whether the proposed MLP schema in arXiv:2310.12545 does not suffer from the curse of dimensionality. In this paper, we prove that the MLP algorithm in arXiv:2310.12545 indeed can overcome the curse of dimensionality, i.e. that its computational complexity only grows polynomially in the dimension $d\in \mathbb{N}$ and the reciprocal of the accuracy $\varepsilon$, under some suitable assumptions on the nonlinear part of the corresponding PDE.
The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge. This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg's model) and reasoning about knowledge mediated by other agents observing data (Wigner's friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.
We examine the extent to which sublinear-sample property testing and estimation applies to settings where samples are independently but not identically distributed. Specifically, we consider the following distributional property testing framework: Suppose there is a set of distributions over a discrete support of size $k$, $\textbf{p}_1, \textbf{p}_2,\ldots,\textbf{p}_T$, and we obtain $c$ independent draws from each distribution. Suppose the goal is to learn or test a property of the average distribution, $\textbf{p}_{\mathrm{avg}}$. This setup models a number of important practical settings where the individual distributions correspond to heterogeneous entities -- either individuals, chronologically distinct time periods, spatially separated data sources, etc. From a learning standpoint, even with $c=1$ samples from each distribution, $\Theta(k/\varepsilon^2)$ samples are necessary and sufficient to learn $\textbf{p}_{\mathrm{avg}}$ to within error $\varepsilon$ in TV distance. To test uniformity or identity -- distinguishing the case that $\textbf{p}_{\mathrm{avg}}$ is equal to some reference distribution, versus has $\ell_1$ distance at least $\varepsilon$ from the reference distribution, we show that a linear number of samples in $k$ is necessary given $c=1$ samples from each distribution. In contrast, for $c \ge 2$, we recover the usual sublinear sample testing of the i.i.d. setting: we show that $O(\sqrt{k}/\varepsilon^2 + 1/\varepsilon^4)$ samples are sufficient, matching the optimal sample complexity in the i.i.d. case in the regime where $\varepsilon \ge k^{-1/4}$. Additionally, we show that in the $c=2$ case, there is a constant $\rho > 0$ such that even in the linear regime with $\rho k$ samples, no tester that considers the multiset of samples (ignoring which samples were drawn from the same $\textbf{p}_i$) can perform uniformity testing.
We study the stability of the Lanczos algorithm run on problems whose eigenvector empirical spectral distribution is near to a reference measure with well-behaved orthogonal polynomials. We give a backwards stability result which can be upgraded to a forward stability result when the reference measure has a density supported on a single interval with square root behavior at the endpoints. Our analysis implies the Lanczos algorithm run on many large random matrix models is in fact forward stable, and hence nearly deterministic, even when computations are carried out in finite precision arithmetic. Since the Lanczos algorithm is not forward stable in general, this provides yet another example of the fact that random matrices are far from "any old matrix", and care must be taken when using them to test numerical algorithms.
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks. Like associative memory systems, these networks define a dynamical system that converges to a set of target states. In this work we show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is (asymptotically) identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this connection, we formulate a generalized framework for understanding the formation of long-term memory, where creative generation and memory recall can be seen as parts of a unified continuum.
The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations and for formulating invariant visual operations at higher levels. This paper defines and proves a joint covariance property under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations, which makes it possible to characterize how different types of image transformations interact with each other. Specifically, the derived relations show the receptive field parameters need to be transformed, in order to match the output from spatio-temporal receptive fields with the underlying spatio-temporal image transformations.
A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of ``strong blockwise decomposability'' and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of ``strong uniformly blockwise decomposable'' constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.
Compartmental models provide simple and efficient tools to analyze the relevant transmission processes during an outbreak, to produce short-term forecasts or transmission scenarios, and to assess the impact of vaccination campaigns. However, their calibration is not straightforward, since many factors contribute to the rapid change of the transmission dynamics during an epidemic. For example, there might be changes in the individual awareness, the imposition of non-pharmacological interventions and the emergence of new variants. As a consequence, model parameters such as the transmission rate are doomed to change in time, making their assessment more challenging. Here, we propose to use Physics-Informed Neural Networks (PINNs) to track the temporal changes in the model parameters and provide an estimate of the model state variables. PINNs recently gained attention in many engineering applications thanks to their ability to consider both the information from data (typically uncertain) and the governing equations of the system. The ability of PINNs to identify unknown model parameters makes them particularly suitable to solve ill-posed inverse problems, such as those arising in the application of epidemiological models. Here, we develop a reduced-split approach for the implementation of PINNs to estimate the temporal changes in the state variables and transmission rate of an epidemic based on the SIR model equation and infectious data. The main idea is to split the training first on the epidemiological data, and then on the residual of the system equations. The proposed method is applied to five synthetic test cases and two real scenarios reproducing the first months of the COVID-19 Italian pandemic. Our results show that the split implementation of PINNs outperforms the standard approach in terms of accuracy (up to one order of magnitude) and computational times (speed up of 20%).