亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimizing multiple competing objectives is a common problem across science and industry. The inherent inextricable trade-off between those objectives leads one to the task of exploring their Pareto front. A meaningful quantity for the purpose of the latter is the hypervolume indicator, which is used in Bayesian Optimization (BO) and Evolutionary Algorithms (EAs). However, the computational complexity for the calculation of the hypervolume scales unfavorably with increasing number of objectives and data points, which restricts its use in those common multi-objective optimization frameworks. To overcome these restrictions we propose to approximate the hypervolume function with a deep neural network, which we call DeepHV. For better sample efficiency and generalization, we exploit the fact that the hypervolume is scale-equivariant in each of the objectives as well as permutation invariant w.r.t. both the objectives and the samples, by using a deep neural network that is equivariant w.r.t. the combined group of scalings and permutations. We evaluate our method against exact, and approximate hypervolume methods in terms of accuracy, computation time, and generalization. We also apply and compare our methods to state-of-the-art multi-objective BO methods and EAs on a range of synthetic benchmark test cases. The results show that our methods are promising for such multi-objective optimization tasks.

相關內容

Deep learning methods are emerging as popular computational tools for solving forward and inverse problems in traffic flow. In this paper, we study a neural operator framework for learning solutions to nonlinear hyperbolic partial differential equations with applications in macroscopic traffic flow models. In this framework, an operator is trained to map heterogeneous and sparse traffic input data to the complete macroscopic traffic state in a supervised learning setting. We chose a physics-informed Fourier neural operator ($\pi$-FNO) as the operator, where an additional physics loss based on a discrete conservation law regularizes the problem during training to improve the shock predictions. We also propose to use training data generated from random piecewise constant input data to systematically capture the shock and rarefied solutions. From experiments using the LWR traffic flow model, we found superior accuracy in predicting the density dynamics of a ring-road network and urban signalized road. We also found that the operator can be trained using simple traffic density dynamics, e.g., consisting of $2-3$ vehicle queues and $1-2$ traffic signal cycles, and it can predict density dynamics for heterogeneous vehicle queue distributions and multiple traffic signal cycles $(\geq 2)$ with an acceptable error. The extrapolation error grew sub-linearly with input complexity for a proper choice of the model architecture and training data. Adding a physics regularizer aided in learning long-term traffic density dynamics, especially for problems with periodic boundary data.

Penalizing complexity (PC) priors is a principled framework for designing priors that reduce model complexity. PC priors penalize the Kullback-Leibler Divergence (KLD) between the distributions induced by a ``simple'' model and that of a more complex model. However, in many common cases, it is impossible to construct a prior in this way because the KLD is infinite. Various approximations are used to mitigate this problem, but the resulting priors then fail to follow the designed principles. We propose a new class of priors, the Wasserstein complexity penalization (WCP) priors, by replacing KLD with the Wasserstein distance in the PC prior framework. These priors avoid the infinite model distance issues and can be derived by following the principles exactly, making them more interpretable. Furthermore, principles and recipes to construct joint WCP priors for multiple parameters analytically and numerically are proposed and we show that they can be easily obtained, either numerically or analytically, for a general class of models. The methods are illustrated through several examples for which PC priors have previously been applied.

Distributed quantum computing, particularly distributed quantum machine learning, has gained substantial prominence for its capacity to harness the collective power of distributed quantum resources, transcending the limitations of individual quantum nodes. Meanwhile, the critical concern of privacy within distributed computing protocols remains a significant challenge, particularly in standard classical federated learning (FL) scenarios where data of participating clients is susceptible to leakage via gradient inversion attacks by the server. This paper presents innovative quantum protocols with quantum communication designed to address the FL problem, strengthen privacy measures, and optimize communication efficiency. In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states and propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning. These protocols offer substantial advancements in privacy preservation with low communication resources, forging a path toward efficient quantum communication-assisted FL protocols and contributing to the development of secure distributed quantum machine learning, thus addressing critical privacy concerns in the quantum computing era.

We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results, and a couple of applications in view of bifurcation analysis.

We describe a novel algorithm for solving general parametric (nonlinear) eigenvalue problems. Our method has two steps: first, high-accuracy solutions of non-parametric versions of the problem are gathered at some values of the parameters; these are then combined to obtain global approximations of the parametric eigenvalues. To gather the non-parametric data, we use non-intrusive contour-integration-based methods, which, however, cannot track eigenvalues that migrate into/out of the contour as the parameter changes. Special strategies are described for performing the combination-over-parameter step despite having only partial information on such migrating eigenvalues. Moreover, we dedicate a special focus to the approximation of eigenvalues that undergo bifurcations. Finally, we propose an adaptive strategy that allows one to effectively apply our method even without any a priori information on the behavior of the sought-after eigenvalues. Numerical tests are performed, showing that our algorithm can achieve remarkably high approximation accuracy.

We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.

The increase in performance and power of computing systems requires the wider use of program optimizations. The goal of performing optimizations is not only to reduce program runtime, but also to reduce other computer resources including power consumption. The goal of the study was to evaluate the impact of different optimization levels and various optimization strategies on power consumption. In a series of experiments, it was established that the average power consumption tends to peak for the programs with optimized source code. The articles also describes the impact of changing computer architecture on power consumption graphs. The relationships between the average and median values of power consumption by example programs are considered. The possibility of creating program energy consumption profile for a parallel program is shown.

Hesitant fuzzy sets are widely used in the instances of uncertainty and hesitation. The inclusion relationship is an important and foundational definition for sets. Hesitant fuzzy set, as a kind of set, needs explicit definition of inclusion relationship. Base on the hesitant fuzzy membership degree of discrete form, several kinds of inclusion relationships for hesitant fuzzy sets are proposed. And then some foundational propositions of hesitant fuzzy sets and the families of hesitant fuzzy sets are presented. Finally, some foundational propositions of hesitant fuzzy information systems with respect to parameter reductions are put forward, and an example and an algorithm are given to illustrate the processes of parameter reductions.

The prediction accuracy of machine learning methods is steadily increasing, but the calibration of their uncertainty predictions poses a significant challenge. Numerous works focus on obtaining well-calibrated predictive models, but less is known about reliably assessing model calibration. This limits our ability to know when algorithms for improving calibration have a real effect, and when their improvements are merely artifacts due to random noise in finite datasets. In this work, we consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem. The null hypothesis is that the predictive model is calibrated, while the alternative hypothesis is that the deviation from calibration is sufficiently large. We find that detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions. When the conditional class probabilities are H\"older continuous, we propose T-Cal, a minimax optimal test for calibration based on a debiased plug-in estimator of the $\ell_2$-Expected Calibration Error (ECE). We further propose Adaptive T-Cal, a version that is adaptive to unknown smoothness. We verify our theoretical findings with a broad range of experiments, including with several popular deep neural net architectures and several standard post-hoc calibration methods. T-Cal is a practical general-purpose tool, which -- combined with classical tests for discrete-valued predictors -- can be used to test the calibration of virtually any probabilistic classification method.

Many imaging science tasks can be modeled as a discrete linear inverse problem. Solving linear inverse problems is often challenging, with ill-conditioned operators and potentially non-unique solutions. Embedding prior knowledge, such as smoothness, into the solution can overcome these challenges. In this work, we encode prior knowledge using a non-negative patch dictionary, which effectively learns a basis from a training set of natural images. In this dictionary basis, we desire solutions that are non-negative and sparse (i.e., contain many zero entries). With these constraints, standard methods for solving discrete linear inverse problems are not directly applicable. One such approach is the modified residual norm steepest descent (MRNSD), which produces non-negative solutions but does not induce sparsity. In this paper, we provide two methods based on MRNSD that promote sparsity. In our first method, we add an $\ell_1$-regularization term with a new, optimal step size. In our second method, we propose a new non-negative, sparsity-promoting mapping of the solution. We compare the performance of our proposed methods on a number of numerical experiments, including deblurring, image completion, computer tomography, and superresolution. Our results show that these methods effectively solve discrete linear inverse problems with non-negativity and sparsity constraints.

北京阿比特科技有限公司