亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding the power of parameterized quantum circuits (PQCs) in accomplishing machine learning tasks is one of the most important questions in quantum machine learning. In this paper, we analyze the expressivity of PQCs through the lens of function approximation. Previously established universal approximation theorems for PQCs are mainly nonconstructive, leading us to the following question: How large do the PQCs need to be to approximate the target function up to a given error? We exhibit explicit constructions of data re-uploading PQCs for approximating continuous and smooth functions and establish quantitative approximation error bounds in terms of the width, the depth and the number of trainable parameters of the PQCs. To achieve this, we utilize techniques from quantum signal processing and linear combinations of unitaries to construct PQCs that implement multivariate polynomials. We implement global and local approximation techniques using Bernstein polynomials and local Taylor expansion and analyze their performances in the quantum setting. We also compare our proposed PQCs to nearly optimal deep neural networks in approximating high-dimensional smooth functions, showing that the ratio between model sizes of PQC and deep neural networks is exponentially small with respect to the input dimension. This suggests a potentially novel avenue for showcasing quantum advantages in quantum machine learning.

相關內容

Motivated by limitations on the depth of near-term quantum devices, we study the depth-computation trade-off in the query model, where the depth corresponds to the number of adaptive query rounds and the computation per layer corresponds to the number of parallel queries per round. We achieve the strongest known separation between quantum algorithms with $r$ versus $r-1$ rounds of adaptivity. We do so by using the $k$-fold Forrelation problem introduced by Aaronson and Ambainis (SICOMP'18). For $k=2r$, this problem can be solved using an $r$ round quantum algorithm with only one query per round, yet we show that any $r-1$ round quantum algorithm needs an exponential (in the number of qubits) number of parallel queries per round. Our results are proven following the Fourier analytic machinery developed in recent works on quantum-classical separations. The key new component in our result are bounds on the Fourier weights of quantum query algorithms with bounded number of rounds of adaptivity. These may be of independent interest as they distinguish the polynomials that arise from such algorithms from arbitrary bounded polynomials of the same degree.

We propose a theory for matrix completion that goes beyond the low-rank structure commonly considered in the literature and applies to general matrices of low description complexity. Specifically, complexity of the sets of matrices encompassed by the theory is measured in terms of Hausdorff and upper Minkowski dimensions. Our goal is the characterization of the number of linear measurements, with an emphasis on rank-$1$ measurements, needed for the existence of an algorithm that yields reconstruction, either perfect, with probability 1, or with arbitrarily small probability of error, depending on the setup. Concretely, we show that matrices taken from a set $\mathcal{U}$ such that $\mathcal{U}-\mathcal{U}$ has Hausdorff dimension $s$ can be recovered from $k>s$ measurements, and random matrices supported on a set $\mathcal{U}$ of Hausdorff dimension $s$ can be recovered with probability 1 from $k>s$ measurements. What is more, we establish the existence of recovery mappings that are robust against additive perturbations or noise in the measurements. Concretely, we show that there are $\beta$-H\"older continuous mappings recovering matrices taken from a set of upper Minkowski dimension $s$ from $k>2s/(1-\beta)$ measurements and, with arbitrarily small probability of error, random matrices supported on a set of upper Minkowski dimension $s$ from $k>s/(1-\beta)$ measurements. The numerous concrete examples we consider include low-rank matrices, sparse matrices, QR decompositions with sparse R-components, and matrices of fractal nature.

Despite the advancements in high-performance computing and modern numerical algorithms, the cost remains prohibitive for multi-query kinetic plasma simulations. In this work, we develop data-driven reduced-order models (ROM) for collisionless electrostatic plasma dynamics, based on the kinetic Vlasov-Poisson equation. Our ROM approach projects the equation onto a linear subspace defined by principal proper orthogonal decomposition (POD) modes. We introduce an efficient tensorial method to update the nonlinear term using a precomputed third-order tensor. We capture multiscale behavior with a minimal number of POD modes by decomposing the solution into multiple time windows using a physical-time indicator and creating a temporally-local ROM. Applied to 1D-1V simulations, specifically the benchmark two-stream instability case, our time-windowed reduced-order model (TW-ROM) with the tensorial approach solves the equation approximately 280 times faster than Eulerian simulations while maintaining a maximum relative error of 4% for the training data and 13% for the testing data.

Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.

Active reconfigurable intelligent surface (ARIS) is a promising way to compensate for multiplicative fading attenuation by amplifying and reflecting event signals to selected users. This paper investigates the performance of ARIS assisted non-orthogonal multiple access (NOMA) networks over cascaded Nakagami-m fading channels. The effects of hardware impairments (HIS) and reflection coefficients on ARIS-NOMA networks with imperfect successive interference cancellation (ipSIC) and perfect successive interference cancellation (pSIC) are considered. More specifically, we develop new precise and asymptotic expressions of outage probability and ergodic data rate with ipSIC/pSIC for ARIS-NOMA-HIS networks. According to the approximated analyses, the diversity orders and multiplexing gains for couple of non-orthogonal users are attained in detail. Additionally, the energy efficiency of ARIS-NOMA-HIS networks is surveyed in delay-limited and delay-tolerant transmission schemes. The simulation findings are presented to demonstrate that: i) The outage behaviors and ergodic data rates of ARIS-NOMA-HIS networks precede that of ARIS aided orthogonal multiple access (OMA) and passive reconfigurable intelligent surface (PRIS) aided OMA; ii) As the reflection coefficient of ARIS increases, ARIS-NOMA-HIS networks have the ability to provide the strengthened outage performance; and iii) ARIS-NOMA-HIS networks are more energy efficient than ARIS/PRIS-OMA networks and conventional cooperative schemes.

Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learning and often achieves better generalization performance than SGD. However, existing optimization theory can only explain the faster convergence of ASGD, but cannot explain its better generalization. In this paper, we study the generalization of ASGD for overparameterized linear regression, which is possibly the simplest setting of learning with overparameterization. We establish an instance-dependent excess risk bound for ASGD within each eigen-subspace of the data covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the subspace of small eigenvalues, exhibiting a faster rate of exponential decay for bias error, while in the subspace of large eigenvalues, its bias error decays slower than SGD; and (ii) the variance error of ASGD is always larger than that of SGD. Our result suggests that ASGD can outperform SGD when the difference between the initialization and the true weight vector is mostly confined to the subspace of small eigenvalues. Additionally, when our analysis is specialized to linear regression in the strongly convex setting, it yields a tighter bound for bias error than the best-known result.

In the aim of reducing the computational cost of the resolution of parameter-dependent eigenvalue problems, a model order reduction (MOR) procedure is proposed. We focus on the case of non-self-adjoint generalized eigenvalue problems, such as the stationary multigroup neutron diffusion equations. The method lies in an approximation of the manifold of solutions using a Proper Orthogonal Decomposition approach. The numerical method is composed of two stages. In the offline stage, we build a reduced space which approximates the manifold. In the online stage, for any given new set of parameters, we solve a reduced problem on the reduced space within a much smaller computational time than the required time to solve the high-fidelity problem. This method is applied to core computations in the APOLLO3 code.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司