This paper considers the problem of inference in cluster randomized experiments when cluster sizes are non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by non-ignorable cluster sizes we mean that "large'' clusters and "small'' clusters may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing sizes. In order to permit this sort of flexibility, we consider a sampling framework in which cluster sizes themselves are random. In this way, our analysis departs from earlier analyses of cluster randomized experiments in which cluster sizes are treated as non-random. We distinguish between two different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-weighted cluster-level average treatment effect. For each parameter, we provide methods for inference in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned using a covariate-adaptive stratified randomization procedure. We additionally permit the experimenter to sample only a subset of the units within each cluster rather than the entire cluster and demonstrate the implications of such sampling for some commonly used estimators. A small simulation study and empirical demonstration show the practical relevance of our theoretical results.
We introduce and characterize a natural generalization of the Two-Wave with Diffuse Power (TWDP) fading model, by allowing that the incident waves arrive in different clusters. The newly proposed model, referred to as the Multi-cluster Two-Wave (MTW) fading model, generalizes both the TWDP and the kappa-mu models under a common umbrella. The special case on which the model parameters reach extreme values is also analyzed, aimed to model harsh fading conditions reported in experimental measurements obtained in enclosed environments. The chief probability functions of both the MTW and the MTW Extreme fading models are obtained, including the probability density function, the cumulative distribution function and the generalized moment-generating function. A number of applications for these models are exemplified, including outage probability in interference-limited scenarios, energy detection, and composite fading modeling.
Statistical models typically capture uncertainties in our knowledge of the corresponding real-world processes, however, it is less common for this uncertainty specification to capture uncertainty surrounding the values of the inputs to the model, which are often assumed known. We develop general modelling methodology with uncertain inputs in the context of the Bayes linear paradigm, which involves adjustment of second-order belief specifications over all quantities of interest only, without the requirement for probabilistic specifications. In particular, we propose an extension of commonly-employed second-order modelling assumptions to the case of uncertain inputs, with explicit implementation in the context of regression analysis, stochastic process modelling, and statistical emulation. We apply the methodology to a regression model for extracting aluminium by electrolysis, and emulation of the motivating epidemiological simulator chain to model the impact of an airborne infectious disease.
Discovering causal relations from observational data is important. The existence of unobserved variables (e.g. latent confounding or mediation) can mislead the causal identification. To overcome this problem, proximal causal discovery methods attempted to adjust for the bias via the proxy of the unobserved variable. Particularly, hypothesis test-based methods proposed to identify the causal edge by testing the induced violation of linearity. However, these methods only apply to discrete data with strict level constraints, which limits their practice in the real world. In this paper, we fix this problem by extending the proximal hypothesis test to cases where the system consists of continuous variables. Our strategy is to present regularity conditions on the conditional distributions of the observed variables given the hidden factor, such that if we discretize its observed proxy with sufficiently fine, finite bins, the involved discretization error can be effectively controlled. Based on this, we can convert the problem of testing continuous causal relations to that of testing discrete causal relations in each bin, which can be effectively solved with existing methods. These non-parametric regularities we present are mild and can be satisfied by a wide range of structural causal models. Using both simulated and real-world data, we show the effectiveness of our method in recovering causal relations when unobserved variables exist.
Query re-optimization is an adaptive query processing technique that re-invokes the optimizer at certain points in query execution. The goal is to dynamically correct the cardinality estimation errors using the statistics collected at runtime to adjust the query plan to improve the overall performance. We identify a key weakness in existing re-optimization algorithms: their subquery division and re-optimization trigger strategies rely heavily on the optimizer's initial plan, which can be far away from optimal. We, therefore, propose QuerySplit, a novel re-optimization algorithm that skips the potentially misleading global plan and instead generates subqueries directly from the logical plan as the basic re-optimization units. By developing a cost function that prioritizes the execution of less "damaging" subqueries, QuerySplit successfully postpones (sometimes avoids) the execution of complex large joins to maximize their probability of having smaller input sizes. We implemented QuerySplit in PostgreSQL and compared our solution against four state-of-the-art re-optimization algorithms using the Join Order Benchmark. Our experiments show that QuerySplit reduces the benchmark execution time by 35% compared to the second-best alternative. The performance gap between QuerySplit and an optimal optimizer is within 4%.
Robust feature selection is vital for creating reliable and interpretable Machine Learning (ML) models. When designing statistical prediction models in cases where domain knowledge is limited and underlying interactions are unknown, choosing the optimal set of features is often difficult. To mitigate this issue, we introduce a Multidata (M) causal feature selection approach that simultaneously processes an ensemble of time series datasets and produces a single set of causal drivers. This approach uses the causal discovery algorithms PC1 or PCMCI that are implemented in the Tigramite Python package. These algorithms utilize conditional independence tests to infer parts of the causal graph. Our causal feature selection approach filters out causally-spurious links before passing the remaining causal features as inputs to ML models (Multiple linear regression, Random Forest) that predict the targets. We apply our framework to the statistical intensity prediction of Western Pacific Tropical Cyclones (TC), for which it is often difficult to accurately choose drivers and their dimensionality reduction (time lags, vertical levels, and area-averaging). Using more stringent significance thresholds in the conditional independence tests helps eliminate spurious causal relationships, thus helping the ML model generalize better to unseen TC cases. M-PC1 with a reduced number of features outperforms M-PCMCI, non-causal ML, and other feature selection methods (lagged correlation, random), even slightly outperforming feature selection based on eXplainable Artificial Intelligence. The optimal causal drivers obtained from our causal feature selection help improve our understanding of underlying relationships and suggest new potential drivers of TC intensification.
Treatment effect estimation under unconfoundedness is a fundamental task in causal inference. In response to the challenge of analyzing high-dimensional datasets collected in substantive fields such as epidemiology, genetics, economics, and social sciences, many methods for treatment effect estimation with high-dimensional nuisance parameters (the outcome regression and the propensity score) have been developed in recent years. However, it is still unclear what is the necessary and sufficient sparsity condition on the nuisance parameters for the treatment effect to be $\sqrt{n}$-estimable. In this paper, we propose a new Double-Calibration strategy that corrects the estimation bias of the nuisance parameter estimates computed by regularized high-dimensional techniques and demonstrate that the corresponding Doubly-Calibrated estimator achieves $1 / \sqrt{n}$-rate as long as one of the nuisance parameters is sparse with sparsity below $\sqrt{n} / \log p$, where $p$ denotes the ambient dimension of the covariates, whereas the other nuisance parameter can be arbitrarily complex and completely misspecified. The Double-Calibration strategy can also be applied to settings other than treatment effect estimation, e.g. regression coefficient estimation in the presence of diverging number of controls in a semiparametric partially linear model.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.