While annotating decent amounts of data to satisfy sophisticated learning models can be cost-prohibitive for many real-world applications. Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem. Some recent studies explored the potential of combining AL and SSL to better probe the unlabeled data. However, almost all these contemporary SSL-AL works use a simple combination strategy, ignoring SSL and AL's inherent relation. Further, other methods suffer from high computational costs when dealing with large-scale, high-dimensional datasets. Motivated by the industry practice of labeling data, we propose an innovative Inconsistency-based virtual aDvErsarial Active Learning (IDEAL) algorithm to further investigate SSL-AL's potential superiority and achieve mutual enhancement of AL and SSL, i.e., SSL propagates label information to unlabeled samples and provides smoothed embeddings for AL, while AL excludes samples with inconsistent predictions and considerable uncertainty for SSL. We estimate unlabeled samples' inconsistency by augmentation strategies of different granularities, including fine-grained continuous perturbation exploration and coarse-grained data transformations. Extensive experiments, in both text and image domains, validate the effectiveness of the proposed algorithm, comparing it against state-of-the-art baselines. Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
The availability of large labeled datasets is the key component for the success of deep learning. However, annotating labels on large datasets is generally time-consuming and expensive. Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling. Diversity-based sampling algorithms are known as integral components of representation-based approaches for active learning. In this paper, we introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting. Self-supervised representation learning is used to consider the diversity of samples in the initial dataset selection algorithm. Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings. By considering the consistency information with the diversity in the consistency-based embedding scheme, the proposed method could select more informative samples for labeling in the semi-supervised learning setting. Comparative experiments show that the proposed method achieves compelling results on CIFAR-10 and Caltech-101 datasets compared with previous active learning approaches by utilizing the diversity of unlabeled data.
Next Point-of-Interest (POI) recommendation has become an indispensable functionality in Location-based Social Networks (LBSNs) due to its effectiveness in helping people decide the next POI to visit. However, accurate recommendation requires a vast amount of historical check-in data, thus threatening user privacy as the location-sensitive data needs to be handled by cloud servers. Although there have been several on-device frameworks for privacy-preserving POI recommendations, they are still resource-intensive when it comes to storage and computation, and show limited robustness to the high sparsity of user-POI interactions. On this basis, we propose a novel decentralized collaborative learning framework for POI recommendation (DCLR), which allows users to train their personalized models locally in a collaborative manner. DCLR significantly reduces the local models' dependence on the cloud for training, and can be used to expand arbitrary centralized recommendation models. To counteract the sparsity of on-device user data when learning each local model, we design two self-supervision signals to pretrain the POI representations on the server with geographical and categorical correlations of POIs. To facilitate collaborative learning, we innovatively propose to incorporate knowledge from either geographically or semantically similar users into each local model with attentive aggregation and mutual information maximization. The collaborative learning process makes use of communications between devices while requiring only minor engagement from the central server for identifying user groups, and is compatible with common privacy preservation mechanisms like differential privacy. We evaluate DCLR with two real-world datasets, where the results show that DCLR outperforms state-of-the-art on-device frameworks and yields competitive results compared with centralized counterparts.
Self-supervised learning (SSL) recently has achieved outstanding success on recommendation. By setting up an auxiliary task (either predictive or contrastive), SSL can discover supervisory signals from the raw data without human annotation, which greatly mitigates the problem of sparse user-item interactions. However, most SSL-based recommendation models rely on general-purpose auxiliary tasks, e.g., maximizing correspondence between node representations learned from the original and perturbed interaction graphs, which are explicitly irrelevant to the recommendation task. Accordingly, the rich semantics reflected by social relationships and item categories, which lie in the recommendation data-based heterogeneous graphs, are not fully exploited. To explore recommendation-specific auxiliary tasks, we first quantitatively analyze the heterogeneous interaction data and find a strong positive correlation between the interactions and the number of user-item paths induced by meta-paths. Based on the finding, we design two auxiliary tasks that are tightly coupled with the target task (one is predictive and the other one is contrastive) towards connecting recommendation with the self-supervision signals hiding in the positive correlation. Finally, a model-agnostic DUal-Auxiliary Learning (DUAL) framework which unifies the SSL and recommendation tasks is developed. The extensive experiments conducted on three real-world datasets demonstrate that DUAL can significantly improve recommendation, reaching the state-of-the-art performance.
Traffic speed prediction is the key to many valuable applications, and it is also a challenging task because of its various influencing factors. Recent work attempts to obtain more information through various hybrid models, thereby improving the prediction accuracy. However, the spatial information acquisition schemes of these methods have two-level differentiation problems. Either the modeling is simple but contains little spatial information, or the modeling is complete but lacks flexibility. In order to introduce more spatial information on the basis of ensuring flexibility, this paper proposes IRNet (Transferable Intersection Reconstruction Network). First, this paper reconstructs the intersection into a virtual intersection with the same structure, which simplifies the topology of the road network. Then, the spatial information is subdivided into intersection information and sequence information of traffic flow direction, and spatiotemporal features are obtained through various models. Third, a self-attention mechanism is used to fuse spatiotemporal features for prediction. In the comparison experiment with the baseline, not only the prediction effect, but also the transfer performance has obvious advantages.
The capacity sharing problem in Radio Access Network (RAN) slicing deals with the distribution of the capacity available in each RAN node among various RAN slices to satisfy their traffic demands and efficiently use the radio resources. While several capacity sharing algorithmic solutions have been proposed in the literature, their practical implementation still remains as a gap. In this paper, the implementation of a Reinforcement Learning-based capacity sharing algorithm over the O-RAN architecture is discussed, providing insights into the operation of the involved interfaces and the containerization of the solution. Moreover, the description of the testbed implemented to validate the solution is included and some performance and validation results are presented.
There are inevitably many mislabeled data in real-world datasets. Because deep neural networks (DNNs) have an enormous capacity to memorize noisy labels, a robust training scheme is required to prevent labeling errors from degrading the generalization performance of DNNs. Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses. In practice, however, training two networks simultaneously can burden computing resources. In this study, we propose a simple yet effective robust training scheme that operates by training only a single network. During training, the proposed method generates temporal self-ensemble by sampling intermediate network parameters from the weight trajectory formed by stochastic gradient descent optimization. The loss sum evaluated with these self-ensembles is used to identify incorrectly labeled samples. In parallel, our method generates multi-view predictions by transforming an input data into various forms and considers their agreement to identify incorrectly labeled samples. By combining the aforementioned metrics, we present the proposed {\it self-ensemble-based robust training} (SRT) method, which can filter the samples with noisy labels to reduce their influence on training. Experiments on widely-used public datasets demonstrate that the proposed method achieves a state-of-the-art performance in some categories without training the dual networks.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.