Artificial neural networks used for reinforcement learning are structurally rigid, meaning that each optimized parameter of the network is tied to its specific placement in the network structure. It also means that a network only works with pre-defined and fixed input- and output sizes. This is a consequence of having the number of optimized parameters being directly dependent on the structure of the network. Structural rigidity limits the ability to optimize parameters of policies across multiple environments that do not share input and output spaces. Here, we evolve a set of neurons and plastic synapses each represented by a gated recurrent unit (GRU). During optimization, the parameters of these fundamental units of a neural network are optimized in different random structural configurations. Earlier work has shown that parameter sharing between units is important for making structurally flexible neurons We show that it is possible to optimize a set of distinct neuron- and synapse types allowing for a mitigation of the symmetry dilemma. We demonstrate this by optimizing a single set of neurons and synapses to solve multiple reinforcement learning control tasks simultaneously.
While the methodological rigor of computing research has improved considerably in the past two decades, quantitative software engineering research is hampered by immature measures and inattention to theory. Measurement-the principled assignment of numbers to phenomena-is intrinsically difficult because observation is predicated upon not only theoretical concepts but also the values and perspective of the research. Despite several previous attempts to raise awareness of more sophisticated approaches to measurement and the importance of quantitatively assessing reliability and validity, measurement issues continue to be widely ignored. The reasons are unknown, but differences in typical engineering and computer science graduate training programs (compared to psychology and management, for example) are involved. This chapter therefore reviews key concepts in the science of measurement and applies them to software engineering research. A series of exercises for applying important measurement concepts to the reader's research are included, and a sample dataset for the reader to try some of the statistical procedures mentioned is provided.
In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
Recently, transductive learning methods, which leverage holdout sets during training, have gained popularity for their potential to improve speed, accuracy, and fairness in machine learning models. Despite this, the composition of the holdout set itself, particularly the balance of sensitive sub-groups, has been largely overlooked. Our experiments on CIFAR and CelebA datasets show that compositional changes in the holdout set can substantially influence fairness metrics. Imbalanced holdout sets exacerbate existing disparities, while balanced holdouts can mitigate issues introduced by imbalanced training data. These findings underline the necessity of constructing holdout sets that are both diverse and representative.
As a staple of data analysis and unsupervised learning, the problem of private clustering has been widely studied under various privacy models. Centralized differential privacy is the first of them, and the problem has also been studied for the local and the shuffle variation. In each case, the goal is to design an algorithm that computes privately a clustering, with the smallest possible error. The study of each variation gave rise to new algorithms: the landscape of private clustering algorithms is therefore quite intricate. In this paper, we show that a 20-year-old algorithm can be slightly modified to work for any of these models. This provides a unified picture: while matching almost all previously known results, it allows us to improve some of them and extend it to a new privacy model, the continual observation setting, where the input is changing over time and the algorithm must output a new solution at each time step.
Bayesian predictive probabilities are commonly used for interim monitoring of clinical trials through efficacy and futility stopping rules. Despite their usefulness, calculation of predictive probabilities, particularly in pre-experiment trial simulation, can be a significant challenge. We introduce an approximation for computing predictive probabilities using either a p-value or a posterior probability that significantly reduces this burden. We show the approximation has a high degree of concordance with standard Monte Carlo imputation methods for computing predictive probabilities, and present five simulation studies comparing the approximation to the full predictive probability for a range of primary analysis strategies: dichotomous, time-to-event, and ordinal endpoints, as well as historical borrowing and longitudinal modeling. We find that this faster method of predictive probability approximation works well in all five applications, thus significantly reducing the computational burden of trial simulation, allowing more virtual trials to be simulated to achieve greater precision in estimating trial operating characteristics.
Speech recognition is an essential start ring of human-computer interaction, and recently, deep learning models have achieved excellent success in this task. However, when the model training and private data provider are always separated, some security threats that make deep neural networks (DNNs) abnormal deserve to be researched. In recent years, the typical backdoor attacks have been researched in speech recognition systems. The existing backdoor methods are based on data poisoning. The attacker adds some incorporated changes to benign speech spectrograms or changes the speech components, such as pitch and timbre. As a result, the poisoned data can be detected by human hearing or automatic deep algorithms. To improve the stealthiness of data poisoning, we propose a non-neural and fast algorithm called Random Spectrogram Rhythm Transformation (RSRT) in this paper. The algorithm combines four steps to generate stealthy poisoned utterances. From the perspective of rhythm component transformation, our proposed trigger stretches or squeezes the mel spectrograms and recovers them back to signals. The operation keeps timbre and content unchanged for good stealthiness. Our experiments are conducted on two kinds of speech recognition tasks, including testing the stealthiness of poisoned samples by speaker verification and automatic speech recognition. The results show that our method has excellent effectiveness and stealthiness. The rhythm trigger needs a low poisoning rate and gets a very high attack success rate.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.