Probabilistic models based on continuous latent spaces, such as variational autoencoders, can be understood as uncountable mixture models where components depend continuously on the latent code. They have proven to be expressive tools for generative and probabilistic modelling, but are at odds with tractable probabilistic inference, that is, computing marginals and conditionals of the represented probability distribution. Meanwhile, tractable probabilistic models such as probabilistic circuits (PCs) can be understood as hierarchical discrete mixture models, and thus are capable of performing exact inference efficiently but often show subpar performance in comparison to continuous latent-space models. In this paper, we investigate a hybrid approach, namely continuous mixtures of tractable models with a small latent dimension. While these models are analytically intractable, they are well amenable to numerical integration schemes based on a finite set of integration points. With a large enough number of integration points the approximation becomes de-facto exact. Moreover, for a finite set of integration points, the integration method effectively compiles the continuous mixture into a standard PC. In experiments, we show that this simple scheme proves remarkably effective, as PCs learnt this way set new state of the art for tractable models on many standard density estimation benchmarks.
Extractable Value refers to a wide class of economic attacks to public blockchains, where adversaries with the power to reorder, drop or insert transactions in a block can "extract" value from smart contracts. Empirical research has shown that mainstream protocols, like e.g. decentralized exchanges, are massively targeted by these attacks, with detrimental effects on their users and on the blockchain network. Despite the growing impact of these attacks in the real world, theoretical foundations are still missing. We propose a formal theory of Extractable Value, based on a general, abstract model of blockchains and smart contracts. Our theory is the basis for proofs of security against Extractable Value attacks.
Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shapley value explanations. Here, we focus on conditional Shapley values for predictive models fitted to tabular data. Estimating precise conditional Shapley values is difficult as they require the estimation of non-trivial conditional expectations. In this article, we develop new methods, extend earlier proposed approaches, and systematize the new refined and existing methods into different method classes for comparison and evaluation. The method classes use either Monte Carlo integration or regression to model the conditional expectations. We conduct extensive simulation studies to evaluate how precisely the different method classes estimate the conditional expectations, and thereby the conditional Shapley values, for different setups. We also apply the methods to several real-world data experiments and provide recommendations for when to use the different method classes and approaches. Roughly speaking, we recommend using parametric methods when we can specify the data distribution almost correctly, as they generally produce the most accurate Shapley value explanations. When the distribution is unknown, both generative methods and regression models with a similar form as the underlying predictive model are good and stable options. Regression-based methods are often slow to train but produce the Shapley value explanations quickly once trained. The vice versa is true for Monte Carlo-based methods, making the different methods appropriate in different practical situations.
In machine learning, training data often capture the behaviour of multiple subgroups of some underlying human population. This behaviour can often be modelled as observations of an unknown dynamical system with an unobserved state. When the training data for the subgroups are not controlled carefully, however, under-representation bias arises. To counter under-representation bias, we introduce two natural notions of fairness in time-series forecasting problems: subgroup fairness and instantaneous fairness. These notions extend predictive parity to the learning of dynamical systems. We also show globally convergent methods for the fairness-constrained learning problems using hierarchies of convexifications of non-commutative polynomial optimisation problems. We also show that by exploiting sparsity in the convexifications, we can reduce the run time of our methods considerably. Our empirical results on a biased data set motivated by insurance applications and the well-known COMPAS data set demonstrate the efficacy of our methods.
Environmental sensors are crucial for monitoring weather conditions and the impacts of climate change. However, it is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica. Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty. Gaussian process (GP) models are widely used for this purpose, but they struggle with capturing complex non-stationary behaviour and scaling to large datasets. This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues. A ConvGNP uses neural networks to parameterise a joint Gaussian distribution at arbitrary target locations, enabling flexibility and scalability. Using simulated surface air temperature anomaly over Antarctica as training data, the ConvGNP learns spatial and seasonal non-stationarities, outperforming a non-stationary GP baseline. In a simulated sensor placement experiment, the ConvGNP better predicts the performance boost obtained from new observations than GP baselines, leading to more informative sensor placements. We contrast our approach with physics-based sensor placement methods and propose future steps towards an operational sensor placement recommendation system. Our work could help to realise environmental digital twins that actively direct measurement sampling to improve the digital representation of reality.
Single-channel deep speech enhancement approaches often estimate a single multiplicative mask to extract clean speech without a measure of its accuracy. Instead, in this work, we propose to quantify the uncertainty associated with clean speech estimates in neural network-based speech enhancement. Predictive uncertainty is typically categorized into aleatoric uncertainty and epistemic uncertainty. The former accounts for the inherent uncertainty in data and the latter corresponds to the model uncertainty. Aiming for robust clean speech estimation and efficient predictive uncertainty quantification, we propose to integrate statistical complex Gaussian mixture models (CGMMs) into a deep speech enhancement framework. More specifically, we model the dependency between input and output stochastically by means of a conditional probability density and train a neural network to map the noisy input to the full posterior distribution of clean speech, modeled as a mixture of multiple complex Gaussian components. Experimental results on different datasets show that the proposed algorithm effectively captures predictive uncertainty and that combining powerful statistical models and deep learning also delivers a superior speech enhancement performance.
Directional tests to compare incomplete undirected graphs are developed in the general context of covariance selection for Gaussian graphical models. The exactness of the underlying saddlepoint approximation is proved for chordal graphs and leads to exact control of the size of the tests, given that the only approximation error involved is due to the numerical calculation of two scalar integrals. Although exactness is not guaranteed for non-chordal graphs, the ability of the saddlepoint approximation to control the relative error leads the directional test to overperform its competitors even in these cases. The accuracy of our proposal is verified by simulation experiments under challenging scenarios, where inference via standard asymptotic approximations to the likelihood ratio test and some of its higher-order modifications fails. The directional approach is used to illustrate the assessment of Markovian dependencies in a dataset from a veterinary trial on cattle. A second example with microarray data shows how to select the graph structure related to genetic anomalies due to acute lymphocytic leukemia.
We characterise the unbiasedness of the score function, viewed as an inference function for a class of finite mixture models. The models studied represent the situation where there is a stratification of the observations in a finite number of groups. We show that, under mild regularity conditions, the score function for estimating the parameters identifying each group's distribution is unbiased. We also show that if one introduces a mixture in the scenario described above so that for some observations, it is only known that they belong to some of the groups with a probability not in $\{ 0, 1 \}$, then the score function becomes biased. We argue then that under further mild regularity, the maximum likelihood estimate is not consistent. The results above are extended to regular models containing arbitrary nuisance parameters, including semiparametric models.
Safety is one of the biggest concerns to applying reinforcement learning (RL) to the physical world. In its core part, it is challenging to ensure RL agents persistently satisfy a hard state constraint without white-box or black-box dynamics models. This paper presents an integrated model learning and safe control framework to safeguard any agent, where its dynamics are learned as Gaussian processes. The proposed theory provides (i) a novel method to construct an offline dataset for model learning that best achieves safety requirements; (ii) a parameterization rule for safety index to ensure the existence of safe control; (iii) a safety guarantee in terms of probabilistic forward invariance when the model is learned using the aforementioned dataset. Simulation results show that our framework guarantees almost zero safety violation on various continuous control tasks.
Deep learning models, including modern systems like large language models, are well known to offer unreliable estimates of the uncertainty of their decisions. In order to improve the quality of the confidence levels, also known as calibration, of a model, common approaches entail the addition of either data-dependent or data-independent regularization terms to the training loss. Data-dependent regularizers have been recently introduced in the context of conventional frequentist learning to penalize deviations between confidence and accuracy. In contrast, data-independent regularizers are at the core of Bayesian learning, enforcing adherence of the variational distribution in the model parameter space to a prior density. The former approach is unable to quantify epistemic uncertainty, while the latter is severely affected by model misspecification. In light of the limitations of both methods, this paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs), that applies both regularizers while optimizing over a variational distribution as in Bayesian learning. Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.