We consider the well-studied Robust $(k, z)$-Clustering problem, which generalizes the classic $k$-Median, $k$-Means, and $k$-Center problems. Given a constant $z\ge 1$, the input to Robust $(k, z)$-Clustering is a set $P$ of $n$ weighted points in a metric space $(M,\delta)$ and a positive integer $k$. Further, each point belongs to one (or more) of the $m$ many different groups $S_1,S_2,\ldots,S_m$. Our goal is to find a set $X$ of $k$ centers such that $\max_{i \in [m]} \sum_{p \in S_i} w(p) \delta(p,X)^z$ is minimized. This problem arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness. For polynomial time computation, an approximation factor of $O(\log m/\log\log m)$ is known [Makarychev, Vakilian, COLT $2021$], which is tight under a plausible complexity assumption even in the line metrics. For FPT time, there is a $(3^z+\epsilon)$-approximation algorithm, which is tight under GAP-ETH [Goyal, Jaiswal, Inf. Proc. Letters, 2023]. Motivated by the tight lower bounds for general discrete metrics, we focus on \emph{geometric} spaces such as the (discrete) high-dimensional Euclidean setting and metrics of low doubling dimension, which play an important role in data analysis applications. First, for a universal constant $\eta_0 >0.0006$, we devise a $3^z(1-\eta_{0})$-factor FPT approximation algorithm for discrete high-dimensional Euclidean spaces thereby bypassing the lower bound for general metrics. We complement this result by showing that even the special case of $k$-Center in dimension $\Theta(\log n)$ is $(\sqrt{3/2}- o(1))$-hard to approximate for FPT algorithms. Finally, we complete the FPT approximation landscape by designing an FPT $(1+\epsilon)$-approximation scheme (EPAS) for the metric of sub-logarithmic doubling dimension.
In this paper we report our new finding on the linear sampling and factorization methods: in addition to shape identification, the linear sampling and factorization methods have capability in parameter identification. Our demonstration is for shape/parameter identification associated with a restricted Fourier integral operator which arises from the multi-frequency inverse source problem for a fixed observation direction and the Born inverse scattering problems. Within the framework of linear sampling method, we develop both a shape identification theory and a parameter identification theory which are stimulated, analyzed, and implemented with the help of the prolate spheroidal wave functions and their generalizations. Both the shape and parameter identification theories are general, since the theories allow any general regularization scheme such as the Tikhonov or the singular value cut off regularization. We further propose a prolate-Galerkin formulation of the linear sampling method for implementation and provide numerical experiments to demonstrate how the linear sampling method is capable of reconstructing both the shape and the parameter.
Approximating convex bodies is a fundamental question in geometry and has a wide variety of applications. Given a convex body $K$ of diameter $\Delta$ in $\mathbb{R}^d$ for fixed $d$, the objective is to minimize the number of vertices (alternatively, the number of facets) of an approximating polytope for a given Hausdorff error $\varepsilon$. The best known uniform bound, due to Dudley (1974), shows that $O((\Delta/\varepsilon)^{(d-1)/2})$ facets suffice. While this bound is optimal in the case of a Euclidean ball, it is far from optimal for ``skinny'' convex bodies. A natural way to characterize a convex object's skinniness is in terms of its relationship to the Euclidean ball. Given a convex body $K$, define its surface diameter $\Delta_{d-1}$ to be the diameter of a Euclidean ball of the same surface area as $K$. It follows from generalizations of the isoperimetric inequality that $\Delta \geq \Delta_{d-1}$. We show that, under the assumption that the width of the body in any direction is at least $\varepsilon$, it is possible to approximate a convex body using $O((\Delta_{d-1}/\varepsilon)^{(d-1)/2})$ facets. This bound is never worse than the previous bound and may be significantly better for skinny bodies. The bound is tight, in the sense that for any value of $\Delta_{d-1}$, there exist convex bodies that, up to constant factors, require this many facets. The improvement arises from a novel approach to sampling points on the boundary of a convex body. We employ a classical concept from convexity, called Macbeath regions. We demonstrate that Macbeath regions in $K$ and $K$'s polar behave much like polar pairs. We then apply known results on the Mahler volume to bound their number.
Spectral clustering is one of the most popular unsupervised machine learning methods. Constructing similarity matrix is crucial to this type of method. In most existing works, the similarity matrix is computed once for all or is updated alternatively. However, the former is difficult to reflect comprehensive relationships among data points, and the latter is time-consuming and is even infeasible for large-scale problems. In this work, we propose a restarted clustering framework with self-guiding and block diagonal representation. An advantage of the strategy is that some useful clustering information obtained from previous cycles could be preserved as much as possible. To the best of our knowledge, this is the first work that applies restarting strategy to spectral clustering. The key difference is that we reclassify the samples in each cycle of our method, while they are classified only once in existing methods. To further release the overhead, we introduce a block diagonal representation with Nystr\"{o}m approximation for constructing the similarity matrix. Theoretical results are established to show the rationality of inexact computations in spectral clustering. Comprehensive experiments are performed on some benchmark databases, which show the superiority of our proposed algorithms over many state-of-the-art algorithms for large-scale problems. Specifically, our framework has a potential boost for clustering algorithms and works well even using an initial guess chosen randomly.
Consider a random sample $(X_{1},\ldots,X_{n})$ from an unknown discrete distribution $P=\sum_{j\geq1}p_{j}\delta_{s_{j}}$ on a countable alphabet $\mathbb{S}$, and let $(Y_{n,j})_{j\geq1}$ be the empirical frequencies of distinct symbols $s_{j}$'s in the sample. We consider the problem of estimating the $r$-order missing mass, which is a discrete functional of $P$ defined as $$\theta_{r}(P;\mathbf{X}_{n})=\sum_{j\geq1}p^{r}_{j}I(Y_{n,j}=0).$$ This is generalization of the missing mass whose estimation is a classical problem in statistics, being the subject of numerous studies both in theory and methods. First, we introduce a nonparametric estimator of $\theta_{r}(P;\mathbf{X}_{n})$ and a corresponding non-asymptotic confidence interval through concentration properties of $\theta_{r}(P;\mathbf{X}_{n})$. Then, we investigate minimax estimation of $\theta_{r}(P;\mathbf{X}_{n})$, which is the main contribution of our work. We show that minimax estimation is not feasible over the class of all discrete distributions on $\mathbb{S}$, and not even for distributions with regularly varying tails, which only guarantee that our estimator is consistent for $\theta_{r}(P;\mathbf{X}_{n})$. This leads to introduce the stronger assumption of second-order regular variation for the tail behaviour of $P$, which is proved to be sufficient for minimax estimation of $\theta_r(P;\mathbf{X}_{n})$, making the proposed estimator an optimal minimax estimator of $\theta_{r}(P;\mathbf{X}_{n})$. Our interest in the $r$-order missing mass arises from forensic statistics, where the estimation of the $2$-order missing mass appears in connection to the estimation of the likelihood ratio $T(P,\mathbf{X}_{n})=\theta_{1}(P;\mathbf{X}_{n})/\theta_{2}(P;\mathbf{X}_{n})$, known as the "fundamental problem of forensic mathematics". We present theoretical guarantees to nonparametric estimation of $T(P,\mathbf{X}_{n})$.
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to the intrinsic data structures. In real world applications, such an assumption of data lying exactly on a low dimensional manifold is stringent. This paper introduces a relaxed assumption that the input data are concentrated around a subset of $\mathbb{R}^d$ denoted by $\mathcal{S}$, and the intrinsic dimension of $\mathcal{S}$ can be characterized by a new complexity notation -- effective Minkowski dimension. We prove that, the sample complexity of deep nonparametric regression only depends on the effective Minkowski dimension of $\mathcal{S}$ denoted by $p$. We further illustrate our theoretical findings by considering nonparametric regression with an anisotropic Gaussian random design $N(0,\Sigma)$, where $\Sigma$ is full rank. When the eigenvalues of $\Sigma$ have an exponential or polynomial decay, the effective Minkowski dimension of such an Gaussian random design is $p=\mathcal{O}(\sqrt{\log n})$ or $p=\mathcal{O}(n^\gamma)$, respectively, where $n$ is the sample size and $\gamma\in(0,1)$ is a small constant depending on the polynomial decay rate. Our theory shows that, when the manifold assumption does not hold, deep neural networks can still adapt to the effective Minkowski dimension of the data, and circumvent the curse of the ambient dimensionality for moderate sample sizes.
This paper studies the problem of learning an unknown function $f$ from given data about $f$. The learning problem is to give an approximation $\hat f$ to $f$ that predicts the values of $f$ away from the data. There are numerous settings for this learning problem depending on (i) what additional information we have about $f$ (known as a model class assumption), (ii) how we measure the accuracy of how well $\hat f$ predicts $f$, (iii) what is known about the data and data sites, (iv) whether the data observations are polluted by noise. A mathematical description of the optimal performance possible (the smallest possible error of recovery) is known in the presence of a model class assumption. Under standard model class assumptions, it is shown in this paper that a near optimal $\hat f$ can be found by solving a certain discrete over-parameterized optimization problem with a penalty term. Here, near optimal means that the error is bounded by a fixed constant times the optimal error. This explains the advantage of over-parameterization which is commonly used in modern machine learning. The main results of this paper prove that over-parameterized learning with an appropriate loss function gives a near optimal approximation $\hat f$ of the function $f$ from which the data is collected. Quantitative bounds are given for how much over-parameterization needs to be employed and how the penalization needs to be scaled in order to guarantee a near optimal recovery of $f$. An extension of these results to the case where the data is polluted by additive deterministic noise is also given.
We consider the classical problem of heteroscedastic linear regression, where we are given $n$ samples $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ obtained from $y_i = \langle \mathbf{w}^{*}, \mathbf{x}_i \rangle + \epsilon_i \cdot \langle \mathbf{f}^{*}, \mathbf{x}_i \rangle$, where $\mathbf{x}_i \sim N(0,\mathbf{I})$, $\epsilon_i \sim N(0,1)$, and our task is to estimate $\mathbf{w}^{*}$. In addition to the classical applications of heteroscedastic models in fields such as statistics, econometrics, time series analysis etc., it is also particularly relevant in machine learning when data is collected from multiple sources of varying but apriori unknown quality, e.g., large model training. Our work shows that we can estimate $\mathbf{w}^{*}$ in squared norm up to an error of $\tilde{O}\left(\|\mathbf{f}^{*}\|^2 \cdot \left(\frac{1}{n} + \left(\frac{d}{n}\right)^2\right)\right)$ and prove a matching lower bound (up to logarithmic factors). Our result substantially improves upon the previous best known upper bound of $\tilde{O}\left(\|\mathbf{f}^{*}\|^2\cdot \frac{d}{n}\right)$. Our upper bound result is based on a novel analysis of a simple, classical heuristic going back to at least Davidian and Carroll (1987) and constitutes the first non-asymptotic convergence guarantee for this approach. As a byproduct, our analysis also provides improved rates of estimation for both linear regression and phase retrieval with multiplicative noise, which maybe of independent interest. The lower bound result relies on a careful application of LeCam's two point method, adapted to work with heavy tailed random variables where the relevant mutual information quantities are infinite (precluding a direct application of LeCam's method), and could also be of broader interest.
We consider a problem of approximation of $d$-variate functions defined on $\mathbb{R}^d$ which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as $d\to\infty$. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as $d\to\infty$.
We present a novel framework for learning cost-efficient latent representations in problems with high-dimensional state spaces through nonlinear dimension reduction. By enriching linear state approximations with low-order polynomial terms we account for key nonlinear interactions existing in the data thereby reducing the problem's intrinsic dimensionality. Two methods are introduced for learning the representation of such low-dimensional, polynomial manifolds for embedding the data. The manifold parametrization coefficients can be obtained by regression via either a proper orthogonal decomposition or an alternating minimization based approach. Our numerical results focus on the one-dimensional Korteweg-de Vries equation where accounting for nonlinear correlations in the data was found to lower the representation error by up to two orders of magnitude compared to linear dimension reduction techniques.
We study the asymptotic generalization of an overparameterized linear model for multiclass classification under the Gaussian covariates bi-level model introduced in Subramanian et al.~'22, where the number of data points, features, and classes all grow together. We fully resolve the conjecture posed in Subramanian et al.~'22, matching the predicted regimes for generalization. Furthermore, our new lower bounds are akin to an information-theoretic strong converse: they establish that the misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of our tight results is that the min-norm interpolating classifier can be asymptotically suboptimal relative to noninterpolating classifiers in the regime where the min-norm interpolating regressor is known to be optimal. The key to our tight analysis is a new variant of the Hanson-Wright inequality which is broadly useful for multiclass problems with sparse labels. As an application, we show that the same type of analysis can be used to analyze the related multilabel classification problem under the same bi-level ensemble.