亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.

相關內容

Numerical simulations with rigid particles, drops or vesicles constitute some examples that involve 3D objects with spherical topology. When the numerical method is based on boundary integral equations, the error in using a regular quadrature rule to approximate the layer potentials that appear in the formulation will increase rapidly as the evaluation point approaches the surface and the integrand becomes sharply peaked. To determine when the accuracy becomes insufficient, and a more costly special quadrature method should be used, error estimates are needed. In this paper we present quadrature error estimates for layer potentials evaluated near surfaces of genus 0, parametrized using a polar and an azimuthal angle, discretized by a combination of the Gauss-Legendre and the trapezoidal quadrature rules. The error estimates involve no unknown coefficients, but complex valued roots of a specified distance function. The evaluation of the error estimates in general requires a one dimensional local root-finding procedure, but for specific geometries we obtain analytical results. Based on these explicit solutions, we derive simplified error estimates for layer potentials evaluated near spheres; these simple formulas depend only on the distance from the surface, the radius of the sphere and the number of discretization points. The usefulness of these error estimates is illustrated with numerical examples.

Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However, such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries and constant remeshing. In this work, we employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. The resulting mechanical equilibrium problem is semidefinite, making it difficult to solve. In this work, we present a computational strategy for efficiently solving near-singular SBM elasticity problems. We use the block-structured adaptive mesh refinement (BSAMR) method for resolving evolving boundaries appropriately, coupled with a geometric multigrid solver for an efficient solution of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably including the importance of grid versus node-centered fields. We demonstrate the solver's accuracy and performance for three representative examples: a) plastic strain evolution around a void, b) crack nucleation and propagation in brittle materials, and c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations. We present this framework as a versatile tool for studying a wide variety of solid mechanics problems involving variable geometry.

We consider the problem of generative modeling based on smoothing an unknown density of interest in $\mathbb{R}^d$ using factorial kernels with $M$ independent Gaussian channels with equal noise levels introduced by Saremi and Srivastava (2022). First, we fully characterize the time complexity of learning the resulting smoothed density in $\mathbb{R}^{Md}$, called M-density, by deriving a universal form for its parametrization in which the score function is by construction permutation equivariant. Next, we study the time complexity of sampling an M-density by analyzing its condition number for Gaussian distributions. This spectral analysis gives a geometric insight on the "shape" of M-densities as one increases $M$. Finally, we present results on the sample quality in this class of generative models on the CIFAR-10 dataset where we report Fr\'echet inception distances (14.15), notably obtained with a single noise level on long-run fast-mixing MCMC chains.

In 1973, Lemmens and Seidel posed the problem of determining the maximum number of equiangular lines in $\mathbb{R}^r$ with angle $\arccos(\alpha)$ and gave a partial answer in the regime $r \leq 1/\alpha^2 - 2$. At the other extreme where $r$ is at least exponential in $1/\alpha$, recent breakthroughs have led to an almost complete resolution of this problem. In this paper, we introduce a new method for obtaining upper bounds which unifies and improves upon previous approaches, thereby bridging the gap between the aforementioned regimes, as well as significantly extending or improving all previously known bounds when $r \geq 1/\alpha^2 - 2$. Our method is based on orthogonal projection of matrices with respect to the Frobenius inner product and it also yields the first extension of the Alon-Boppana theorem to dense graphs, with equality for strongly regular graphs corresponding to $\binom{r+1}{2}$ equiangular lines in $\mathbb{R}^r$. Applications of our method in the complex setting will be discussed as well.

Spectral density estimation is a core problem of system identification, which is an important research area of system control and signal processing. There have been numerous results on the design of spectral density estimators. However to our best knowledge, quantitative error analyses of the spectral density estimation have not been proposed yet. In real practice, there are two main factors which induce errors in the spectral density estimation, including the external additive noise and the limited number of samples. In this paper, which is a very preliminary version, we first consider a univariate spectral density estimator using covariance lags. The estimation task is performed by a convex optimization scheme, and the covariance lags of the estimated spectral density are exactly as desired, which makes it possible for quantitative error analyses such as to derive tight error upper bounds. We analyze the errors induced by the two factors and propose upper and lower bounds for the errors. Then the results of the univariate spectral estimator are generalized to the multivariate one.

Localization in a pre-built map is a basic technique for robot autonomous navigation. Existing mapping and localization methods commonly work well in small-scale environments. As a map grows larger, however, more memory is required and localization becomes inefficient. To solve these problems, map sparsification becomes a practical necessity to acquire a subset of the original map for localization. Previous map sparsification methods add a quadratic term in mixed-integer programming to enforce a uniform distribution of selected landmarks, which requires high memory capacity and heavy computation. In this paper, we formulate map sparsification in an efficient linear form and select uniformly distributed landmarks based on 2D discretized grids. Furthermore, to reduce the influence of different spatial distributions between the mapping and query sequences, which is not considered in previous methods, we also introduce a space constraint term based on 3D discretized grids. The exhaustive experiments in different datasets demonstrate the superiority of the proposed methods in both efficiency and localization performance. The relevant codes will be released at //github.com/fishmarch/SLAM_Map_Compression.

This paper considers statistical inference of time-varying network vector autoregression models for large-scale time series. A latent group structure is imposed on the heterogeneous and node-specific time-varying momentum and network spillover effects so that the number of unknown time-varying coefficients to be estimated can be reduced considerably. A classic agglomerative clustering algorithm with normalized distance matrix estimates is combined with a generalized information criterion to consistently estimate the latent group number and membership. A post-grouping local linear smoothing method is proposed to estimate the group-specific time-varying momentum and network effects, substantially improving the convergence rates of the preliminary estimates which ignore the latent structure. In addition, a post-grouping specification test is conducted to verify the validity of the parametric model assumption for group-specific time-varying coefficient functions, and the asymptotic theory is derived for the test statistic constructed via a kernel weighted quadratic form under the null and alternative hypotheses. Numerical studies including Monte-Carlo simulation and an empirical application to the global trade flow data are presented to examine the finite-sample performance of the developed model and methodology.

We study the problem of verification and synthesis of robust control barrier functions (CBF) for control-affine polynomial systems with bounded additive uncertainty and convex polynomial constraints on the control. We first formulate robust CBF verification and synthesis as multilevel polynomial optimization problems (POP), where verification optimizes -- in three levels -- the uncertainty, control, and state, while synthesis additionally optimizes the parameter of a chosen parametric CBF candidate. We then show that, by invoking the KKT conditions of the inner optimizations over uncertainty and control, the verification problem can be simplified as a single-level POP and the synthesis problem reduces to a min-max POP. This reduction leads to multilevel semidefinite relaxations. For the verification problem, we apply Lasserre's hierarchy of moment relaxations. For the synthesis problem, we draw connections to existing relaxation techniques for robust min-max POP, which first use sum-of-squares programming to find increasingly tight polynomial lower bounds to the unknown value function of the verification POP, and then call Lasserre's hierarchy again to maximize the lower bounds. Both semidefinite relaxations guarantee asymptotic global convergence to optimality. We provide an in-depth study of our framework on the controlled Van der Pol Oscillator, both with and without additive uncertainty.

This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts, taking into account dependencies between quantiles and covariates through a smoothing procedure that allows for online learning. Two smoothing methods are discussed: dimensionality reduction using Basis matrices and penalized smoothing. The new online learning algorithm generalizes the standard CRPS learning framework into multivariate dimensions. It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic learning properties. We provide an in-depth discussion on possible extensions of the algorithm and several nested cases related to the existing literature on online forecast combination. The methodology is applied to forecasting day-ahead electricity prices, which are 24-dimensional distributional forecasts. The proposed method yields significant improvements over uniform combination in terms of continuous ranked probability score (CRPS). We discuss the temporal evolution of the weights and hyperparameters and present the results of reduced versions of the preferred model. A fast C++ implementation of all discussed methods is provided in the R-Package profoc.

We propose a new 6-DoF grasp pose synthesis approach from 2D/2.5D input based on keypoints. Keypoint-based grasp detector from image input has demonstrated promising results in the previous study, where the additional visual information provided by color images compensates for the noisy depth perception. However, it relies heavily on accurately predicting the location of keypoints in the image space. In this paper, we devise a new grasp generation network that reduces the dependency on precise keypoint estimation. Given an RGB-D input, our network estimates both the grasp pose from keypoint detection as well as scale towards the camera. We further re-design the keypoint output space in order to mitigate the negative impact of keypoint prediction noise to Perspective-n-Point (PnP) algorithm. Experiments show that the proposed method outperforms the baseline by a large margin, validating the efficacy of our approach. Finally, despite trained on simple synthetic objects, our method demonstrate sim-to-real capacity by showing competitive results in real-world robot experiments.

北京阿比特科技有限公司