We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds. The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled, and to use the underlying latent vectors as input to the perception head. The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information, that can be used to boost an actual perception task. This principle has a very simple formulation, which makes it both easy to implement and widely applicable to a large range of 3D sensors and deep networks performing semantic segmentation or object detection. In fact, it supports a single-stream pipeline, as opposed to most contrastive learning approaches, allowing training on limited resources. We conducted extensive experiments on various autonomous driving datasets, involving very different kinds of lidars, for both semantic segmentation and object detection. The results show the effectiveness of our method to learn useful representations without any annotation, compared to existing approaches. Code is available at \href{//github.com/valeoai/ALSO}{github.com/valeoai/ALSO}
Event-based cameras are raising interest within the computer vision community. These sensors operate with asynchronous pixels, emitting events, or "spikes", when the luminance change at a given pixel since the last event surpasses a certain threshold. Thanks to their inherent qualities, such as their low power consumption, low latency and high dynamic range, they seem particularly tailored to applications with challenging temporal constraints and safety requirements. Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs), since the coupling of an asynchronous sensor with neuromorphic hardware can yield real-time systems with minimal power requirements. In this work, we seek to develop one such system, using both event sensor data from the DSEC dataset and spiking neural networks to estimate optical flow for driving scenarios. We propose a U-Net-like SNN which, after supervised training, is able to make dense optical flow estimations. To do so, we encourage both minimal norm for the error vector and minimal angle between ground-truth and predicted flow, training our model with back-propagation using a surrogate gradient. In addition, the use of 3d convolutions allows us to capture the dynamic nature of the data by increasing the temporal receptive fields. Upsampling after each decoding stage ensures that each decoder's output contributes to the final estimation. Thanks to separable convolutions, we have been able to develop a light model (when compared to competitors) that can nonetheless yield reasonably accurate optical flow estimates.
Object detection in 3D point clouds is a crucial task in a range of computer vision applications including robotics, autonomous cars, and augmented reality. This work addresses the object detection task in 3D point clouds using a highly efficient, surface-biased, feature extraction method (wang2022rbgnet), that also captures contextual cues on multiple levels. We propose a 3D object detector that extracts accurate feature representations of object candidates and leverages self-attention on point patches, object candidates, and on the global scene in 3D scene. Self-attention is proven to be effective in encoding correlation information in 3D point clouds by (xie2020mlcvnet). While other 3D detectors focus on enhancing point cloud feature extraction by selectively obtaining more meaningful local features (wang2022rbgnet) where contextual information is overlooked. To this end, the proposed architecture uses ray-based surface-biased feature extraction and multi-level context encoding to outperform the state-of-the-art 3D object detector. In this work, 3D detection experiments are performed on scenes from the ScanNet dataset whereby the self-attention modules are introduced one after the other to isolate the effect of self-attention at each level.
This paper proposes \textit{Contour Context}, a simple, effective, and efficient topological loop closure detection pipeline with accurate 3-DoF metric pose estimation, targeting the urban utonomous driving scenario. We interpret the Cartesian birds' eye view (BEV) image projected from 3D LiDAR points as layered distribution of structures. To recover elevation information from BEVs, we slice them at different heights, and connected pixels at each level will form contours. Each contour is parameterized by abstract information, e.g., pixel count, center position, covariance, and mean height. The similarity of two BEVs is calculated in sequential discrete and continuous steps. The first step considers the geometric consensus of graph-like constellations formed by contours in particular localities. The second step models the majority of contours as a 2.5D Gaussian mixture model, which is used to calculate correlation and optimize relative transform in continuous space. A retrieval key is designed to accelerate the search of a database indexed by layered KD-trees. We validate the efficacy of our method by comparing it with recent works on public datasets.
Real-world robotics applications demand object pose estimation methods that work reliably across a variety of scenarios. Modern learning-based approaches require large labeled datasets and tend to perform poorly outside the training domain. Our first contribution is to develop a robust corrector module that corrects pose estimates using depth information, thus enabling existing methods to better generalize to new test domains; the corrector operates on semantic keypoints (but is also applicable to other pose estimators) and is fully differentiable. Our second contribution is an ensemble self-training approach that simultaneously trains multiple pose estimators in a self-supervised manner. Our ensemble self-training architecture uses the robust corrector to refine the output of each pose estimator; then, it evaluates the quality of the outputs using observable correctness certificates; finally, it uses the observably correct outputs for further training, without requiring external supervision. As an additional contribution, we propose small improvements to a regression-based keypoint detection architecture, to enhance its robustness to outliers; these improvements include a robust pooling scheme and a robust centroid computation. Experiments on the YCBV and TLESS datasets show the proposed ensemble self-training outperforms fully supervised baselines while not requiring 3D annotations on real data.
Traditional semantic image search methods aim to retrieve images that match the meaning of the text query. However, these methods typically search for objects on the whole image, without considering the localization of objects within the image. This paper presents an extension of existing object detection models for semantic image search that considers the semantic alignment between object proposals and text queries, with a focus on searching for objects within images. The proposed model uses a single feature extractor, a pre-trained Convolutional Neural Network, and a transformer encoder to encode the text query. Proposal-text alignment is performed using contrastive learning, producing a score for each proposal that reflects its semantic alignment with the text query. The Region Proposal Network (RPN) is used to generate object proposals, and the end-to-end training process allows for an efficient and effective solution for semantic image search. The proposed model was trained end-to-end, providing a promising solution for semantic image search that retrieves images that match the meaning of the text query and generates semantically relevant object proposals.
This article presents a novel telepresence system for advancing aerial manipulation in dynamic and unstructured environments. The proposed system not only features a haptic device, but also a virtual reality (VR) interface that provides real-time 3D displays of the robot's workspace as well as a haptic guidance to its remotely located operator. To realize this, multiple sensors namely a LiDAR, cameras and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines are devised for industrial objects of both known and unknown geometries. We further propose an active learning pipeline in order to increase the sample efficiency of a pipeline component that relies on Deep Neural Networks (DNNs) based object detection. All these algorithms jointly address various challenges encountered during the execution of perception tasks in industrial scenarios. In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Methodologically, these results commonly suggest how an awareness of the algorithms' own failures and uncertainty (`introspection') can be used tackle the encountered problems. Moreover, outdoor experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator (SAM). As a result, we show the viability of the proposed system in future industrial applications.
Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines.Our code and models are available at: //github.com/YukinoWan/WCL
In this paper, we propose an encoder-decoder neural architecture (called Channelformer) to achieve improved channel estimation for orthogonal frequency-division multiplexing (OFDM) waveforms in downlink scenarios. The self-attention mechanism is employed to achieve input precoding for the input features before processing them in the decoder. In particular, we implement multi-head attention in the encoder and a residual convolutional neural architecture as the decoder, respectively. We also employ a customized weight-level pruning to slim the trained neural network with a fine-tuning process, which reduces the computational complexity significantly to realize a low complexity and low latency solution. This enables reductions of up to 70\% in the parameters, while maintaining an almost identical performance compared with the complete Channelformer. We also propose an effective online training method based on the fifth generation (5G) new radio (NR) configuration for the modern communication systems, which only needs the available information at the receiver for online training. Using industrial standard channel models, the simulations of attention-based solutions show superior estimation performance compared with other candidate neural network methods for channel estimation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.