Many algorithms which exactly solve hard problems require branching on more or less complex structures in order to do their job. Those who design such algorithms often find themselves doing a meticulous analysis of numerous different cases in order to identify these structures and design suitable branching rules, all done by hand. This process tends to be error prone and often the resulting algorithm may be difficult to implement in practice. In this work, we aim to automate a part of this process and focus on simplicity of the resulting implementation. We showcase our approach on the following problem. For a constant $d$, the $d$-Path Vertex Cover problem ($d$-PVC) is as follows: Given an undirected graph and an integer $k$, find a subset of at most $k$ vertices of the graph, such that their deletion results in a graph not containing a path on $d$ vertices as a subgraph. We develop a fully automated framework to generate parameterized branching algorithms for the problem and obtain algorithms outperforming those previously known for $3 \le d \le 8$. E.g., we show that $5$-PVC can be solved in $O(2.7^k\cdot n^{O(1)})$ time.
Clans are representations of generalized algebraic theories that contain more information than the finite-limit categories associated to the l.f.p. categories of models via Gabriel-Ulmer duality. Refining Gabriel-Ulmer duality to account for this additional information, this article presents a duality theory between clans and l.f.p. categories equipped with a weak factorization system subject to axioms.
The purpose of this work is to develop a framework to calibrate signed datasets so as to be consistent with specified marginals by suitably extending the Schr\"odinger-Fortet-Sinkhorn paradigm. Specifically, we seek to revise sign-indefinite multi-dimensional arrays in a way that the updated values agree with specified marginals. Our approach follows the rationale in Schr\"odinger's problem, aimed at updating a "prior" probability measure to agree with marginal distributions. The celebrated Sinkhorn's algorithm (established earlier by R.\ Fortet) that solves Schr\"odinger's problem found early applications in calibrating contingency tables in statistics and, more recently, multi-marginal problems in machine learning and optimal transport. Herein, we postulate a sign-indefinite prior in the form of a multi-dimensional array, and propose an optimization problem to suitably update this prior to ensure consistency with given marginals. The resulting algorithm generalizes the Sinkhorn algorithm in that it amounts to iterative scaling of the entries of the array along different coordinate directions. The scaling is multiplicative but also, in contrast to Sinkhorn, inverse-multiplicative depending on the sign of the entries. Our algorithm reduces to the classical Sinkhorn algorithm when the entries of the prior are positive.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
Formal methods were frequently shown to be effective and, perhaps because of that, practitioners are interested in using them more often. Still, these methods are far less applied than expected, particularly, in critical domains where they are strongly recommended and where they have the greatest potential. Our hypothesis is that formal methods still seem not to be applicable enough or ready for their intended use. In critical software engineering, what do we mean when we speak of a formal method? And what does it mean for such a method to be applicable both from a scientific and practical viewpoint? Based on what the literature tells about the first question, with this manifesto, we lay out a set of principles that when followed by a formal method give rise to its mature applicability in a given scope. Rather than exercising criticism of past developments, this manifesto strives to foster an increased use of formal methods to the maximum benefit.
The consensus protocol is a critical component of distributed ledgers and blockchains. Achieving consensus over a decentralized network poses challenges to transaction finality and performance. Currently, the highest-performing consensus algorithms are speculative BFT algorithms, which, however, compromise on the transaction finality guarantees offered by their non-speculative counterparts. In this paper, we introduce Albatross, a Proof-of-Stake (PoS) blockchain consensus algorithm that aims to combine the best of both worlds. At its heart, Albatross is a high-performing, speculative BFT algorithm that offers strong probabilistic finality. We complement this by periodically guaranteeing finality through the Tendermint protocol. We prove our protocol to be secure under standard BFT assumptions and analyze its performance both on a theoretical and practical level. For that, we provide an open-source Rust implementation of Albatross. Our real-world measurements support that our protocol has a performance close to the theoretical maximum for single-chain Proof-of-Stake consensus algorithms.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.