In performative prediction, a predictive model impacts the distribution that generates future data, a phenomenon that is being ignored in classical supervised learning. In this closed-loop setting, the natural measure of performance named performative risk ($\mathrm{PR}$), captures the expected loss incurred by a predictive model \emph{after} deployment. The core difficulty of using the performative risk as an optimization objective is that the data distribution itself depends on the model parameters. This dependence is governed by the environment and not under the control of the learner. As a consequence, even the choice of a convex loss function can result in a highly non-convex $\mathrm{PR}$ minimization problem. Prior work has identified a pair of general conditions on the loss and the mapping from model parameters to distributions that implies the convexity of the performative risk. In this paper, we relax these assumptions and focus on obtaining weaker notions of convexity, without sacrificing the amenability of the $\mathrm{PR}$ minimization problem for iterative optimization methods.
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
In this work we analyze the inverse problem of recovering the space-dependent potential coefficient in an elliptic / parabolic problem from distributed observation. We establish novel (weighted) conditional stability estimates under very mild conditions on the problem data. Then we provide an error analysis of a standard reconstruction scheme based on the standard output least-squares formulation with Tikhonov regularization (by an $H^1$-seminorm penalty), which is then discretized by the Galerkin finite element method with continuous piecewise linear finite elements in space (and also backward Euler method in time for parabolic problems). We present a detailed analysis of the discrete scheme, and provide convergence rates in a weighted $L^2(\Omega)$ for discrete approximations with respect to the exact potential. The error bounds are explicitly dependent on the noise level, regularization parameter and discretization parameter(s). Under suitable conditions, we also derive error estimates in the standard $L^2(\Omega)$ and interior $L^2$ norms. The analysis employs sharp a priori error estimates and nonstandard test functions. Several numerical experiments are given to complement the theoretical analysis.
The convexity of a set can be generalized to the two weaker notions of reach and $r$-convexity; both describe the regularity of a set's boundary. In this article, these two notions are shown to be equivalent for closed subsets of $\mathbb{R}^d$ with $C^1$ smooth, $(d-1)$-dimensional boundary. In the general case, for closed subsets of $\mathbb{R}^d$, we detail a new characterization of the reach in terms of the distance-to-set function applied to midpoints of pairs of points in the set. For compact subsets of $\mathbb{R}^d$, we provide methods of approximating the reach and $r$-convexity based on high-dimensional point cloud data. These methods are intuitive and highly tractable, and produce upper bounds that converge to the respective quantities as the density of the point cloud is increased. Simulation studies suggest that the rates at which the approximation methods converge correspond to those established theoretically.
This article develops a new algorithm named TTRISK to solve high-dimensional risk-averse optimization problems governed by differential equations (ODEs and/or PDEs) under uncertainty. As an example, we focus on the so-called Conditional Value at Risk (CVaR), but the approach is equally applicable to other coherent risk measures. Both the full and reduced space formulations are considered. The algorithm is based on low rank tensor approximations of random fields discretized using stochastic collocation. To avoid non-smoothness of the objective function underpinning the CVaR, we propose an adaptive strategy to select the width parameter of the smoothed CVaR to balance the smoothing and tensor approximation errors. Moreover, unbiased Monte Carlo CVaR estimate can be computed by using the smoothed CVaR as a control variate. To accelerate the computations, we introduce an efficient preconditioner for the KKT system in the full space formulation.The numerical experiments demonstrate that the proposed method enables accurate CVaR optimization constrained by large-scale discretized systems. In particular, the first example consists of an elliptic PDE with random coefficients as constraints. The second example is motivated by a realistic application to devise a lockdown plan for United Kingdom under COVID-19. The results indicate that the risk-averse framework is feasible with the tensor approximations under tens of random variables.
This paper makes 3 contributions. First, it generalizes the Lindeberg\textendash Feller and Lyapunov Central Limit Theorems to Hilbert Spaces by way of $L^2$. Second, it generalizes these results to spaces in which sample failure and missingness can occur. Finally, it shows that satisfaction of the Lindeberg\textendash Feller and Lyapunov Conditions in such spaces implies the satisfaction of the conditions in the completely observed space, and how this guarantees the consistency of inferences from the partial functional data. These latter two results are especially important given the increasing attention to statistical inference with partially observed functional data. This paper goes beyond previous research by providing simple boundedness conditions which guarantee that \textit{all} inferences, as opposed to some proper subset of them, will be consistently estimated. This is shown primarily by aggregating conditional expectations with respect to the space of missingness patterns. This paper appears to be the first to apply this technique.
We introduce a parametric view of non-local two-step denoisers, for which BM3D is a major representative, where quadratic risk minimization is leveraged for unsupervised optimization. Within this paradigm, we propose to extend the underlying mathematical parametric formulation by iteration. This generalization can be expected to further improve the denoising performance, somehow curbed by the impracticality of repeating the second stage for all two-step denoisers. The resulting formulation involves estimating an even larger amount of parameters in a unsupervised manner which is all the more challenging. Focusing on the parameterized form of NL-Ridge, the simplest but also most efficient non-local two-step denoiser, we propose a progressive scheme to approximate the parameters minimizing the risk. In the end, the denoised images are made up of iterative linear combinations of patches. Experiments on artificially noisy images but also on real-world noisy images demonstrate that our method compares favorably with the very best unsupervised denoisers such as WNNM, outperforming the recent deep-learning-based approaches, while being much faster.
We study differentially private (DP) stochastic optimization (SO) with loss functions whose worst-case Lipschitz parameter over all data points may be extremely large. To date, the vast majority of work on DP SO assumes that the loss is uniformly Lipschitz continuous over data (i.e. stochastic gradients are uniformly bounded over all data points). While this assumption is convenient, it often leads to pessimistic excess risk bounds. In many practical problems, the worst-case Lipschitz parameter of the loss over all data points may be extremely large due to outliers. In such cases, the error bounds for DP SO, which scale with the worst-case Lipschitz parameter of the loss, are vacuous. To address these limitations, this work provides near-optimal excess risk bounds that do not depend on the uniform Lipschitz parameter of the loss. Building on a recent line of work [WXDX20, KLZ22], we assume that stochastic gradients have bounded $k$-th order moments for some $k \geq 2$. Compared with works on uniformly Lipschitz DP SO, our excess risk scales with the $k$-th moment bound instead of the uniform Lipschitz parameter of the loss, allowing for significantly faster rates in the presence of outliers and/or heavy-tailed data. For convex and strongly convex loss functions, we provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). In contrast to [WXDX20, KLZ22], our bounds do not require the loss function to be differentiable/smooth. We also devise an accelerated algorithm for smooth losses that runs in linear time and has excess risk that is tight in certain practical parameter regimes. Additionally, our work is the first to address non-convex non-uniformly Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some practical machine learning models. Our Proximal-PL algorithm has near-optimal excess risk.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.