亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In computational social science (CSS), researchers analyze documents to explain social and political phenomena. In most scenarios, CSS researchers first obtain labels for documents and then explain labels using interpretable regression analyses in the second step. The recent advancements in large language models (LLMs) can lower costs for CSS research by annotating documents cheaply at scale, but such surrogate labels are often imperfect and biased. We present a new algorithm for using outputs from LLMs for downstream statistical analyses while guaranteeing statistical properties -- like asymptotic unbiasedness and proper uncertainty quantification -- which are fundamental to CSS research. We show that direct use of LLM-predicted surrogate labels in downstream statistical analyses leads to substantial bias and invalid confidence intervals, even with high surrogate accuracy of 80--90\%. To address this, we build on debiased machine learning to propose the design-based semi-supervised learning (DSL) estimator. DSL employs a doubly-robust procedure to combine surrogate labels with a smaller number of gold-standard labels. Our approach guarantees valid inference for downstream statistical analyses, even when surrogates are arbitrarily biased, without requiring stringent assumptions, by controlling the probability of sampling documents for gold-standard labeling. Both our theoretical analysis and experimental results show that DSL provides valid statistical inference while achieving root mean squared errors comparable to existing alternatives that focus only on prediction without statistical guarantees.

相關內容

Medical image segmentation is vital to the area of medical imaging because it enables professionals to more accurately examine and understand the information offered by different imaging modalities. The technique of splitting a medical image into various segments or regions of interest is known as medical image segmentation. The segmented images that are produced can be used for many different things, including diagnosis, surgery planning, and therapy evaluation. In initial phase of research, major focus has been given to review existing deep-learning approaches, including researches like MultiResUNet, Attention U-Net, classical U-Net, and other variants. The attention feature vectors or maps dynamically add important weights to critical information, and most of these variants use these to increase accuracy, but the network parameter requirements are somewhat more stringent. They face certain problems such as overfitting, as their number of trainable parameters is very high, and so is their inference time. Therefore, the aim of this research is to reduce the network parameter requirements using depthwise separable convolutions, while maintaining performance over some medical image segmentation tasks such as skin lesion segmentation using attention system and residual connections.

Conformal prediction (CP) is a framework to quantify uncertainty of machine learning classifiers including deep neural networks. Given a testing example and a trained classifier, CP produces a prediction set of candidate labels with a user-specified coverage (i.e., true class label is contained with high probability). Almost all the existing work on CP assumes clean testing data and there is not much known about the robustness of CP algorithms w.r.t natural/adversarial perturbations to testing examples. This paper studies the problem of probabilistically robust conformal prediction (PRCP) which ensures robustness to most perturbations around clean input examples. PRCP generalizes the standard CP (cannot handle perturbations) and adversarially robust CP (ensures robustness w.r.t worst-case perturbations) to achieve better trade-offs between nominal performance and robustness. We propose a novel adaptive PRCP (aPRCP) algorithm to achieve probabilistically robust coverage. The key idea behind aPRCP is to determine two parallel thresholds, one for data samples and another one for the perturbations on data (aka "quantile-of-quantile" design). We provide theoretical analysis to show that aPRCP algorithm achieves robust coverage. Our experiments on CIFAR-10, CIFAR-100, and ImageNet datasets using deep neural networks demonstrate that aPRCP achieves better trade-offs than state-of-the-art CP and adversarially robust CP algorithms.

In observational studies, unobserved confounding is a major barrier in isolating the average causal effect (ACE). In these scenarios, two main approaches are often used: confounder adjustment for causality (CAC) and instrumental variable analysis for causation (IVAC). Nevertheless, both are subject to untestable assumptions and, therefore, it may be unclear which assumption violation scenarios one method is superior in terms of mitigating inconsistency for the ACE. Although general guidelines exist, direct theoretical comparisons of the trade-offs between CAC and the IVAC assumptions are limited. Using ordinary least squares (OLS) for CAC and two-stage least squares (2SLS) for IVAC, we analytically compare the relative inconsistency for the ACE of each approach under a variety of assumption violation scenarios and discuss rules of thumb for practice. Additionally, a sensitivity framework is proposed to guide analysts in determining which approach may result in less inconsistency for estimating the ACE with a given dataset. We demonstrate our findings both through simulation and an application examining whether maternal stress during pregnancy affects a neonate's birthweight. The implications of our findings for causal inference practice are discussed, providing guidance for analysts for judging whether CAC or IVAC may be more appropriate for a given situation.

We consider estimation and inference with data collected from episodic reinforcement learning (RL) algorithms; i.e. adaptive experimentation algorithms that at each period (aka episode) interact multiple times in a sequential manner with a single treated unit. Our goal is to be able to evaluate counterfactual adaptive policies after data collection and to estimate structural parameters such as dynamic treatment effects, which can be used for credit assignment (e.g. what was the effect of the first period action on the final outcome). Such parameters of interest can be framed as solutions to moment equations, but not minimizers of a population loss function, leading to $Z$-estimation approaches in the case of static data. However, such estimators fail to be asymptotically normal in the case of adaptive data collection. We propose a re-weighted $Z$-estimation approach with carefully designed adaptive weights to stabilize the episode-varying estimation variance, which results from the nonstationary policy that typical episodic RL algorithms invoke. We identify proper weighting schemes to restore the consistency and asymptotic normality of the re-weighted Z-estimators for target parameters, which allows for hypothesis testing and constructing uniform confidence regions for target parameters of interest. Primary applications include dynamic treatment effect estimation and dynamic off-policy evaluation.

Large language models (LLMs) have shown remarkable capacity for in-context learning (ICL), where learning a new task from just a few training examples is done without being explicitly pre-trained. However, despite the success of LLMs, there has been little understanding of how ICL learns the knowledge from the given prompts. In this paper, to make progress toward understanding the learning behaviour of ICL, we train the same LLMs with the same demonstration examples via ICL and supervised learning (SL), respectively, and investigate their performance under label perturbations (i.e., noisy labels and label imbalance) on a range of classification tasks. First, via extensive experiments, we find that gold labels have significant impacts on the downstream in-context performance, especially for large language models; however, imbalanced labels matter little to ICL across all model sizes. Second, when comparing with SL, we show empirically that ICL is less sensitive to label perturbations than SL, and ICL gradually attains comparable performance to SL as the model size increases.

Large Language Models (LLMs) have demonstrated remarkable abilities across numerous disciplines, primarily assessed through tasks in language generation, knowledge utilization, and complex reasoning. However, their alignment with human emotions and values, which is critical for real-world applications, has not been systematically evaluated. Here, we assessed LLMs' Emotional Intelligence (EI), encompassing emotion recognition, interpretation, and understanding, which is necessary for effective communication and social interactions. Specifically, we first developed a novel psychometric assessment focusing on Emotion Understanding (EU), a core component of EI, suitable for both humans and LLMs. This test requires evaluating complex emotions (e.g., surprised, joyful, puzzled, proud) in realistic scenarios (e.g., despite feeling underperformed, John surprisingly achieved a top score). With a reference frame constructed from over 500 adults, we tested a variety of mainstream LLMs. Most achieved above-average EQ scores, with GPT-4 exceeding 89% of human participants with an EQ of 117. Interestingly, a multivariate pattern analysis revealed that some LLMs apparently did not reply on the human-like mechanism to achieve human-level performance, as their representational patterns were qualitatively distinct from humans. In addition, we discussed the impact of factors such as model size, training method, and architecture on LLMs' EQ. In summary, our study presents one of the first psychometric evaluations of the human-like characteristics of LLMs, which may shed light on the future development of LLMs aiming for both high intellectual and emotional intelligence. Project website: //emotional-intelligence.github.io/

Momentum is known to accelerate the convergence of gradient descent in strongly convex settings without stochastic gradient noise. In stochastic optimization, such as training neural networks, folklore suggests that momentum may help deep learning optimization by reducing the variance of the stochastic gradient update, but previous theoretical analyses do not find momentum to offer any provable acceleration. Theoretical results in this paper clarify the role of momentum in stochastic settings where the learning rate is small and gradient noise is the dominant source of instability, suggesting that SGD with and without momentum behave similarly in the short and long time horizons. Experiments show that momentum indeed has limited benefits for both optimization and generalization in practical training regimes where the optimal learning rate is not very large, including small- to medium-batch training from scratch on ImageNet and fine-tuning language models on downstream tasks.

Confounding is a significant obstacle to unbiased estimation of causal effects from observational data. For settings with high-dimensional covariates -- such as text data, genomics, or the behavioral social sciences -- researchers have proposed methods to adjust for confounding by adapting machine learning methods to the goal of causal estimation. However, empirical evaluation of these adjustment methods has been challenging and limited. In this work, we build on a promising empirical evaluation strategy that simplifies evaluation design and uses real data: subsampling randomized controlled trials (RCTs) to create confounded observational datasets while using the average causal effects from the RCTs as ground-truth. We contribute a new sampling algorithm, which we call RCT rejection sampling, and provide theoretical guarantees that causal identification holds in the observational data to allow for valid comparisons to the ground-truth RCT. Using synthetic data, we show our algorithm indeed results in low bias when oracle estimators are evaluated on the confounded samples, which is not always the case for a previously proposed algorithm. In addition to this identification result, we highlight several finite data considerations for evaluation designers who plan to use RCT rejection sampling on their own datasets. As a proof of concept, we implement an example evaluation pipeline and walk through these finite data considerations with a novel, real-world RCT -- which we release publicly -- consisting of approximately 70k observations and text data as high-dimensional covariates. Together, these contributions build towards a broader agenda of improved empirical evaluation for causal estimation.

Deep learning often faces the challenge of efficiently processing dynamic inputs, such as sensor data or user inputs. For example, an AI writing assistant is required to update its suggestions in real time as a document is edited. Re-running the model each time is expensive, even with compression techniques like knowledge distillation, pruning, or quantization. Instead, we take an incremental computing approach, looking to reuse calculations as the inputs change. However, the dense connectivity of conventional architectures poses a major obstacle to incremental computation, as even minor input changes cascade through the network and restrict information reuse. To address this, we use vector quantization to discretize intermediate values in the network, which filters out noisy and unnecessary modifications to hidden neurons, facilitating the reuse of their values. We apply this approach to the transformers architecture, creating an efficient incremental inference algorithm with complexity proportional to the fraction of the modified inputs. Our experiments with adapting the OPT-125M pre-trained language model demonstrate comparable accuracy on document classification while requiring 12.1X (median) fewer operations for processing sequences of atomic edits.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

北京阿比特科技有限公司