Bug reports are an essential aspect of software development, and it is crucial to identify and resolve them quickly to ensure the consistent functioning of software systems. Retrieving similar bug reports from an existing database can help reduce the time and effort required to resolve bugs. In this paper, we compared the effectiveness of semantic textual similarity methods for retrieving similar bug reports based on a similarity score. We explored several embedding models such as TF-IDF (Baseline), FastText, Gensim, BERT, and ADA. We used the Software Defects Data containing bug reports for various software projects to evaluate the performance of these models. Our experimental results showed that BERT generally outperformed the rest of the models regarding recall, followed by ADA, Gensim, FastText, and TFIDF. Our study provides insights into the effectiveness of different embedding methods for retrieving similar bug reports and highlights the impact of selecting the appropriate one for this task. Our code is available on GitHub.
We consider the problem of forming prediction sets in an online setting where the distribution generating the data is allowed to vary over time. Previous approaches to this problem suffer from over-weighting historical data and thus may fail to quickly react to the underlying dynamics. Here we correct this issue and develop a novel procedure with provably small regret over all local time intervals of a given width. We achieve this by modifying the adaptive conformal inference (ACI) algorithm of Gibbs and Cand\`{e}s (2021) to contain an additional step in which the step-size parameter of ACI's gradient descent update is tuned over time. Crucially, this means that unlike ACI, which requires knowledge of the rate of change of the data-generating mechanism, our new procedure is adaptive to both the size and type of the distribution shift. Our methods are highly flexible and can be used in combination with any baseline predictive algorithm that produces point estimates or estimated quantiles of the target without the need for distributional assumptions. We test our techniques on two real-world datasets aimed at predicting stock market volatility and COVID-19 case counts and find that they are robust and adaptive to real-world distribution shifts.
Frequent modifications of unit test cases are inevitable due to software's continuous underlying changes in source code, design, and requirements. Since manually maintaining software test suites is tedious, timely, and costly, automating the process of generation and maintenance of test units will significantly impact the effectiveness and efficiency of software testing processes. To this end, we propose an automated approach which exploits both structural and semantic properties of source code methods and test cases to recommend the most relevant and useful unit tests to the developers. The proposed approach initially trains a neural network to transform method-level source code, as well as unit tests, into distributed representations (embedded vectors) while preserving the importance of the structure in the code. Retrieving the semantic and structural properties of a given method, the approach computes cosine similarity between the method's embedding and the previously-embedded training instances. Further, according to the similarity scores between the embedding vectors, the model identifies the closest methods of embedding and the associated unit tests as the most similar recommendations. The results on the Methods2Test dataset showed that, while there is no guarantee to have similar relevant test cases for the group of similar methods, the proposed approach extracts the most similar existing test cases for a given method in the dataset, and evaluations show that recommended test cases decrease the developers' effort to generating expected test cases.
For decades, much software engineering research has been dedicated to devising automated solutions aimed at enhancing developer productivity and elevating software quality. The past two decades have witnessed an unparalleled surge in the development of intelligent solutions tailored for software engineering tasks. This momentum established the Artificial Intelligence for Software Engineering (AI4SE) area, which has swiftly become one of the most active and popular areas within the software engineering field. This Future of Software Engineering (FoSE) paper navigates through several focal points. It commences with a succinct introduction and history of AI4SE. Thereafter, it underscores the core challenges inherent to AI4SE, particularly highlighting the need to realize trustworthy and synergistic AI4SE. Progressing, the paper paints a vision for the potential leaps achievable if AI4SE's key challenges are surmounted, suggesting a transition towards Software Engineering 2.0. Two strategic roadmaps are then laid out: one centered on realizing trustworthy AI4SE, and the other on fostering synergistic AI4SE. While this paper may not serve as a conclusive guide, its intent is to catalyze further progress. The ultimate aspiration is to position AI4SE as a linchpin in redefining the horizons of software engineering, propelling us toward Software Engineering 2.0.
Bugs are essential in software engineering; many research studies in the past decades have been proposed to detect, localize, and repair bugs in software systems. Effectiveness evaluation of such techniques requires complex bugs, i.e., those that are hard to detect through testing and hard to repair through debugging. From the classic software engineering point of view, a hard-to-repair bug differs from the correct code in multiple locations, making it hard to localize and repair. Hard-to-detect bugs, on the other hand, manifest themselves under specific test inputs and reachability conditions. These two objectives, i.e., generating hard-to-detect and hard-to-repair bugs, are mostly aligned; a bug generation technique can change multiple statements to be covered only under a specific set of inputs. However, these two objectives are conflicting for learning-based techniques: A bug should have a similar code representation to the correct code in the training data to challenge a bug prediction model to distinguish them. The hard-to-repair bug definition remains the same but with a caveat: the more a bug differs from the original code (at multiple locations), the more distant their representations are and easier to be detected. We propose BugFarm, to transform arbitrary code into multiple complex bugs. BugFarm leverages LLMs to mutate code in multiple locations (hard-to-repair). To ensure that multiple modifications do not notably change the code representation, BugFarm analyzes the attention of the underlying model and instructs LLMs to only change the least attended locations (hard-to-detect). Our comprehensive evaluation of 320k+ bugs from over 2.5M mutants generated by BugFarm and two alternative approaches demonstrates our superiority in generating bugs that are hard to detect by learning-based bug prediction approaches and hard to repair by SOTA learning-based program repair technique.
Software testing is a crucial aspect of software development, and the creation of high-quality tests that adhere to best practices is essential for effective maintenance. Recently, Large Language Models (LLMs) have gained popularity for code generation, including the automated creation of test cases. However, these LLMs are often trained on vast amounts of publicly available code, which may include test cases that do not adhere to best practices and may even contain test smells (anti-patterns). To address this issue, we propose a novel technique called Reinforcement Learning from Static Quality Metrics (RLSQM). To begin, we analyze the anti-patterns generated by the LLM and show that LLMs can generate undesirable test smells. Thus, we train specific reward models for each static quality metric, then utilize Proximal Policy Optimization (PPO) to train models for optimizing a single quality metric at a time. Furthermore, we amalgamate these rewards into a unified reward model aimed at capturing different best practices and quality aspects of tests. By comparing RL-trained models with those trained using supervised learning, we provide insights into how reliably utilize RL to improve test generation quality and into the effects of various training strategies. Our experimental results demonstrate that the RL-optimized model consistently generated high-quality test cases compared to the base LLM, improving the model by up to 21%, and successfully generates nearly 100% syntactically correct code. RLSQM also outperformed GPT-4 on four out of seven metrics. This represents a significant step towards enhancing the overall efficiency and reliability of software testing through Reinforcement Learning and static quality metrics. Our data are available at this link: //figshare.com/s/ded476c8d4c221222849.
System correctness is one of the most crucial and challenging objectives in software and hardware systems. With the increasing evolution of connected and distributed systems, ensuring their correctness requires the use of formal verification for multi-agent systems. In this paper, we present a summary of certain results on model checking for multi-agent systems that derive from the selection of strategies and information for agents. Additionally, we discuss some open directions for future research.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.