亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Individuals lack oversight over systems that process their data. This can lead to discrimination and hidden biases that are hard to uncover. Recent data protection legislation tries to tackle these issues, but it is inadequate. It does not prevent data misusage while stifling sensible use cases for data. We think the conflict between data protection and increasingly data-based systems should be solved differently. When access to data is given, all usages should be made transparent to the data subjects. This enables their data sovereignty, allowing individuals to benefit from sensible data usage while addressing potentially harmful consequences of data misusage. We contribute to this with a technical concept and an empirical evaluation. First, we conceptualize a transparency framework for software design, incorporating research on user trust and experience. Second, we instantiate and empirically evaluate the framework in a focus group study over three months, centering on the user perspective. Our transparency framework enables developing software that incorporates transparency in its design. The evaluation shows that it satisfies usability and trustworthiness requirements. The provided transparency is experienced as beneficial and participants feel empowered by it. This shows that our framework enables Trustworthy Transparency by Design.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

Advanced AI models hold the promise of tremendous benefits for humanity, but society needs to proactively manage the accompanying risks. In this paper, we focus on what we term "frontier AI" models: highly capable foundation models that could possess dangerous capabilities sufficient to pose severe risks to public safety. Frontier AI models pose a distinct regulatory challenge: dangerous capabilities can arise unexpectedly; it is difficult to robustly prevent a deployed model from being misused; and, it is difficult to stop a model's capabilities from proliferating broadly. To address these challenges, at least three building blocks for the regulation of frontier models are needed: (1) standard-setting processes to identify appropriate requirements for frontier AI developers, (2) registration and reporting requirements to provide regulators with visibility into frontier AI development processes, and (3) mechanisms to ensure compliance with safety standards for the development and deployment of frontier AI models. Industry self-regulation is an important first step. However, wider societal discussions and government intervention will be needed to create standards and to ensure compliance with them. We consider several options to this end, including granting enforcement powers to supervisory authorities and licensure regimes for frontier AI models. Finally, we propose an initial set of safety standards. These include conducting pre-deployment risk assessments; external scrutiny of model behavior; using risk assessments to inform deployment decisions; and monitoring and responding to new information about model capabilities and uses post-deployment. We hope this discussion contributes to the broader conversation on how to balance public safety risks and innovation benefits from advances at the frontier of AI development.

Traditionally, robots are regarded as universal motion generation machines. They are designed mainly by kinematics considerations while the desired dynamics is imposed by strong actuators and high-rate control loops. As an alternative, one can first consider the robot's intrinsic dynamics and optimize it in accordance with the desired tasks. Therefore, one needs to better understand intrinsic, uncontrolled dynamics of robotic systems. In this paper we focus on periodic orbits, as fundamental dynamic properties with many practical applications. Algebraic topology and differential geometry provide some fundamental statements about existence of periodic orbits. As an example, we present periodic orbits of the simplest multi-body system: the double-pendulum in gravity. This simple system already displays a rich variety of periodic orbits. We classify these into three classes: toroidal orbits, disk orbits and nonlinear normal modes. Some of these we found by geometrical insights and some by numerical simulation and sampling.

The rapid expansion of the Internet of Things (IoT) and Edge Computing has presented challenges for centralized Machine and Deep Learning (ML/DL) methods due to the presence of distributed data silos that hold sensitive information. To address concerns regarding data privacy, collaborative and privacy-preserving ML/DL techniques like Federated Learning (FL) have emerged. However, ensuring data privacy and performance alone is insufficient since there is a growing need to establish trust in model predictions. Existing literature has proposed various approaches on trustworthy ML/DL (excluding data privacy), identifying robustness, fairness, explainability, and accountability as important pillars. Nevertheless, further research is required to identify trustworthiness pillars and evaluation metrics specifically relevant to FL models, as well as to develop solutions that can compute the trustworthiness level of FL models. This work examines the existing requirements for evaluating trustworthiness in FL and introduces a comprehensive taxonomy consisting of six pillars (privacy, robustness, fairness, explainability, accountability, and federation), along with over 30 metrics for computing the trustworthiness of FL models. Subsequently, an algorithm named FederatedTrust is designed based on the pillars and metrics identified in the taxonomy to compute the trustworthiness score of FL models. A prototype of FederatedTrust is implemented and integrated into the learning process of FederatedScope, a well-established FL framework. Finally, five experiments are conducted using different configurations of FederatedScope to demonstrate the utility of FederatedTrust in computing the trustworthiness of FL models. Three experiments employ the FEMNIST dataset, and two utilize the N-BaIoT dataset considering a real-world IoT security use case.

The rising diffusion of information systems (IS) throughout society poses an increasingly serious threat to privacy as a social value. One approach to alleviating this threat is to establish transparency of information privacy practices (TIPP) so that consumers can better understand how their information is processed. However, the design of transparency artifacts (eg, privacy notices) has clearly not followed this approach, given the ever-increasing volume of information processing. Hence, consumers face a situation where they cannot see the 'forest for the trees' when aiming to ascertain whether information processing meets their privacy expectations. A key problem is that overly comprehensive information presentation results in information overload and is thus counterproductive for establishing TIPP. We depart from the extant design logic of transparency artifacts and develop a theoretical foundation (TIPP theory) for transparency artifact designs useful for establishing TIPP from the perspective of privacy as a social value. We present TIPP theory in two parts to capture the sociotechnical interplay. The first part translates abstract knowledge on the IS artifact and privacy into a description of social subsystems of transparency artifacts, and the second part conveys prescriptive design knowledge in form of a corresponding IS design theory. TIPP theory establishes a bridge from the complexity of the privacy concept to a metadesign for transparency artifacts that is useful to establish TIPP in any IS. In essence, transparency artifacts must accomplish more than offering comprehensive information; they must also be adaptive to the current information needs of consumers.

Federated learning is a decentralized and privacy-preserving technique that enables multiple clients to collaborate with a server to learn a global model without exposing their private data. However, the presence of statistical heterogeneity among clients poses a challenge, as the global model may struggle to perform well on each client's specific task. To address this issue, we introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning. Specifically, we propose a novel algorithm called \emph{FedABML}, which employs hierarchical variational inference across clients. The global prior aims to capture representations of common intrinsic structures from heterogeneous clients, which can then be transferred to their respective tasks and aid in the generation of accurate client-specific approximate posteriors through a few local updates. Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data. Finally, several empirical results are implemented to demonstrate that \emph{FedABML} outperforms several competitive baselines.

In today's competitive and fast-evolving business environment, it is a critical time for organizations to rethink how to make talent-related decisions in a quantitative manner. Indeed, the recent development of Big Data and Artificial Intelligence (AI) techniques have revolutionized human resource management. The availability of large-scale talent and management-related data provides unparalleled opportunities for business leaders to comprehend organizational behaviors and gain tangible knowledge from a data science perspective, which in turn delivers intelligence for real-time decision-making and effective talent management at work for their organizations. In the last decade, talent analytics has emerged as a promising field in applied data science for human resource management, garnering significant attention from AI communities and inspiring numerous research efforts. To this end, we present an up-to-date and comprehensive survey on AI technologies used for talent analytics in the field of human resource management. Specifically, we first provide the background knowledge of talent analytics and categorize various pertinent data. Subsequently, we offer a comprehensive taxonomy of relevant research efforts, categorized based on three distinct application-driven scenarios: talent management, organization management, and labor market analysis. In conclusion, we summarize the open challenges and potential prospects for future research directions in the domain of AI-driven talent analytics.

In the context of designing and implementing ethical Artificial Intelligence (AI), varying perspectives exist regarding developing trustworthy AI for autonomous cars. This study sheds light on the differences in perspectives and provides recommendations to minimize such divergences. By exploring the diverse viewpoints, we identify key factors contributing to the differences and propose strategies to bridge the gaps. This study goes beyond the trolley problem to visualize the complex challenges of trustworthy and ethical AI. Three pillars of trustworthy AI have been defined: transparency, reliability, and safety. This research contributes to the field of trustworthy AI for autonomous cars, providing practical recommendations to enhance the development of AI systems that prioritize both technological advancement and ethical principles.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

北京阿比特科技有限公司