The robustness of supervised deep learning-based medical image classification is significantly undermined by label noise. Although several methods have been proposed to enhance classification performance in the presence of noisy labels, they face some challenges: 1) a struggle with class-imbalanced datasets, leading to the frequent overlooking of minority classes as noisy samples; 2) a singular focus on maximizing performance using noisy datasets, without incorporating experts-in-the-loop for actively cleaning the noisy labels. To mitigate these challenges, we propose a two-phase approach that combines Learning with Noisy Labels (LNL) and active learning. This approach not only improves the robustness of medical image classification in the presence of noisy labels, but also iteratively improves the quality of the dataset by relabeling the important incorrect labels, under a limited annotation budget. Furthermore, we introduce a novel Variance of Gradients approach in LNL phase, which complements the loss-based sample selection by also sampling under-represented samples. Using two imbalanced noisy medical classification datasets, we demonstrate that that our proposed technique is superior to its predecessors at handling class imbalance by not misidentifying clean samples from minority classes as mostly noisy samples.
Ensuring privacy-preserving inference on cryptographically secure data is a well-known computational challenge. To alleviate the bottleneck of costly cryptographic computations in non-linear activations, recent methods have suggested linearizing a targeted portion of these activations in neural networks. This technique results in significantly reduced runtimes with often negligible impacts on accuracy. In this paper, we demonstrate that such computational benefits may lead to increased fairness costs. Specifically, we find that reducing the number of ReLU activations disproportionately decreases the accuracy for minority groups compared to majority groups. To explain these observations, we provide a mathematical interpretation under restricted assumptions about the nature of the decision boundary, while also showing the prevalence of this problem across widely used datasets and architectures. Finally, we show how a simple procedure altering the fine-tuning step for linearized models can serve as an effective mitigation strategy.
We propose sparse regression as an alternative to neural networks for the discovery of parsimonious constitutive models (CMs) from oscillatory shear experiments. Symmetry and frame-invariance are strictly imposed by using tensor basis functions to isolate and describe unknown nonlinear terms in the CMs. We generate synthetic experimental data using the Giesekus and Phan-Thien Tanner CMs, and consider two different scenarios. In the complete information scenario, we assume that the shear stress, along with the first and second normal stress differences, is measured. This leads to a sparse linear regression problem that can be solved efficiently using $l_1$ regularization. In the partial information scenario, we assume that only shear stress data is available. This leads to a more challenging sparse nonlinear regression problem, for which we propose a greedy two-stage algorithm. In both scenarios, the proposed methods fit and interpolate the training data remarkably well. Predictions of the inferred CMs extrapolate satisfactorily beyond the range of training data for oscillatory shear. They also extrapolate reasonably well to flow conditions like startup of steady and uniaxial extension that are not used in the identification of CMs. We discuss ramifications for experimental design, potential algorithmic improvements, and implications of the non-uniqueness of CMs inferred from partial information.
Knowledge graph embedding (KGE) models are often used to predict missing links for knowledge graphs (KGs). However, multiple KG embeddings can perform almost equally well for link prediction yet suggest conflicting predictions for certain queries, termed \textit{predictive multiplicity} in literature. This behavior poses substantial risks for KGE-based applications in high-stake domains but has been overlooked in KGE research. In this paper, we define predictive multiplicity in link prediction. We introduce evaluation metrics and measure predictive multiplicity for representative KGE methods on commonly used benchmark datasets. Our empirical study reveals significant predictive multiplicity in link prediction, with $8\%$ to $39\%$ testing queries exhibiting conflicting predictions. To address this issue, we propose leveraging voting methods from social choice theory, significantly mitigating conflicts by $66\%$ to $78\%$ according to our experiments.
With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.
We describe a novel multi-agent, multi-scale computational cognitive interaction model of instrument operations at the Linac Coherent Light Source (LCLS). A leading scientific user facility, LCLS is the world's first hard x-ray free electron laser, operated by the SLAC National Accelerator Laboratory for the U.S. Department of Energy. As the world's first x-ray free electron laser, LCLS is in high demand and heavily oversubscribed. Our overall project employs cognitive engineering methodologies to improve experimental efficiency and scientific productivity by refining experimental interfaces and workflows, simplifying tasks, reducing errors, and improving operator safety and stress levels. Our model simulates aspects of human cognition at multiple cognitive and temporal scales, ranging from seconds to hours, and among agents playing multiple roles, including instrument operator, real time data analyst, and experiment manager. The model can predict impacts stemming from proposed changes to operational interfaces and workflows. Because the model code is open source, and supplemental videos go into detail on all aspects of the model and results, this approach could be applied to other experimental apparatus and processes. Example results demonstrate the model's potential in guiding modifications to improve operational efficiency and scientific output. We discuss the implications of our findings for cognitive engineering in complex experimental settings and outline future directions for research.
Robot manipulators are often tasked with working in environments with vibrations and are subject to load uncertainty. Providing an accurate tracking control design with implementable torque input for these robots is a complex topic. This paper presents two approaches to solve this problem. The approaches consider joint space tracking control design in the presence of nonlinear uncertain torques caused by external vibration and payload variation. The properties of the uncertain torques are used in both approaches. The first approach is based on the boundedness property, while the second approach considers the differentiability and boundedness together. The controllers derived from each approach differ from the perspectives of accuracy, control effort, and disturbance properties. A Lyapunov-based analysis is utilized to guarantee the stability of the control design in each case. Simulation results validate the approaches and demonstrate the performance of the controllers. The derived controllers show stable results at the cost of the mentioned properties.
Auditing the use of data in training machine-learning (ML) models is an increasingly pressing challenge, as myriad ML practitioners routinely leverage the effort of content creators to train models without their permission. In this paper, we propose a general method to audit an ML model for the use of a data-owner's data in training, without prior knowledge of the ML task for which the data might be used. Our method leverages any existing black-box membership inference method, together with a sequential hypothesis test of our own design, to detect data use with a quantifiable, tunable false-detection rate. We show the effectiveness of our proposed framework by applying it to audit data use in two types of ML models, namely image classifiers and foundation models.
Federated Learning (FL) allows devices to train a global machine learning model without sharing data. In the context of wireless networks, the inherently unreliable nature of the transmission channel introduces delays and errors that compromise the regularity of updating the global model. Furthermore, limited resources and energy consumption of devices are factors that affect FL performance. Therefore, this work proposes a new FL algorithm called FL-E2WS that considers both the requirements of federated training and a wireless network within the scope of the Internet of Things. To reduce the energy cost of devices, FL-E2WS schedules communication resources to allocate the ideal bandwidth and power for the transmission of models under certain device selection and uplink resource block allocation, meeting delay requirements, power consumption, and packet error rate. The simulation results demonstrate that FL-E2WS reduces energy consumption by up to 70.12% and enhances the accuracy of the global model by up to 10.21% compared to the FL algorithms that lacks transmission channel knowledge. Additionally, when compared to FL versions that scale communication resources, FL-E2WS achieves up to a 38.61% reduction in energy consumption and improves the accuracy of the global model by up to 1.61%.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.