亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove a strong composition theorem for junta complexity and show how such theorems can be used to generically boost the performance of property testers. The $\varepsilon$-approximate junta complexity of a function $f$ is the smallest integer $r$ such that $f$ is $\varepsilon$-close to a function that depends only on $r$ variables. A strong composition theorem states that if $f$ has large $\varepsilon$-approximate junta complexity, then $g \circ f$ has even larger $\varepsilon'$-approximate junta complexity, even for $\varepsilon' \gg \varepsilon$. We develop a fairly complete understanding of this behavior, proving that the junta complexity of $g \circ f$ is characterized by that of $f$ along with the multivariate noise sensitivity of $g$. For the important case of symmetric functions $g$, we relate their multivariate noise sensitivity to the simpler and well-studied case of univariate noise sensitivity. We then show how strong composition theorems yield boosting algorithms for property testers: with a strong composition theorem for any class of functions, a large-distance tester for that class is immediately upgraded into one for small distances. Combining our contributions yields a booster for junta testers, and with it new implications for junta testing. This is the first boosting-type result in property testing, and we hope that the connection to composition theorems adds compelling motivation to the study of both topics.

相關內容

We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph $K_{v_1, v_2}=(V_1, V_2 \, ; E)$. Each data is obtained as a sum of selected effects, a subset of $E$. In order to estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of $K_{v_1, v_2}$) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an ($r,\lambda$)-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD. At last, we mention that this SBBD is able to use for deep learning.

When applying deep learning to remote sensing data in archaeological research, a notable obstacle is the limited availability of suitable datasets for training models. The application of transfer learning is frequently employed to mitigate this drawback. However, there is still a need to explore its effectiveness when applied across different archaeological datasets. This paper compares the performance of various transfer learning configurations using two semantic segmentation deep neural networks on two LiDAR datasets. The experimental results indicate that transfer learning-based approaches in archaeology can lead to performance improvements, although a systematic enhancement has not yet been observed. We provide specific insights about the validity of such techniques that can serve as a baseline for future works.

Random linear codes (RLCs) are well known to have nice combinatorial properties and near-optimal parameters in many different settings. However, getting explicit constructions matching the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated several previous works to study the problem of partially derandomizing RLCs, by applying certain operations to an explicit mother code. Among them, one of the most well studied operations is random puncturing, where a series of works culminated in the work of Guruswami and Mosheiff (FOCS' 22), which showed that a random puncturing of a low-biased code is likely to possess almost all interesting local properties of RLCs. In this work, we provide an in-depth study of another, dual operation of random puncturing, known as random shortening, which can be viewed equivalently as random puncturing on the dual code. Our main results show that for any small $\varepsilon$, by starting from a mother code with certain weaker conditions (e.g., having a large distance) and performing a random (or even pseudorandom) shortening, the new code is $\varepsilon$-biased with high probability. Our results hold for any field size and yield a shortened code with constant rate. This can be viewed as a complement to random puncturing, and together, we can obtain codes with properties like RLCs from weaker initial conditions. Our proofs involve several non-trivial methods of estimating the weight distribution of codewords, which may be of independent interest.

Crossed random effects structures arise in many scientific contexts. They raise severe computational problems with likelihood and Bayesian computations scaling like $N^{3/2}$ or worse for $N$ data points. In this paper we develop a composite likelihood approach for crossed random effects probit models. For data arranged in rows and columns, one likelihood uses marginal distributions of the responses as if they were independent, another uses a hierarchical model capturing all within row dependence as if the rows were independent and the third model reverses the roles of rows and columns. We find that this method has a cost that grows as $\mathrm{O}(N)$ in crossed random effects settings where using the Laplace approximation has cost that grows superlinearly. We show how to get consistent estimates of the probit slope and variance components by maximizing those three likelihoods. The algorithm scales readily to a data set of five million observations from Stitch Fix.

The quantum alternating operator ansatz (QAOA) is a heuristic hybrid quantum-classical algorithm for finding high-quality approximate solutions to combinatorial optimization problems, such as Maximum Satisfiability. While QAOA is well-studied, theoretical results as to its runtime or approximation ratio guarantees are still relatively sparse. We provide some of the first lower bounds for the number of rounds (the dominant component of QAOA runtimes) required for QAOA. For our main result, (i) we leverage a connection between quantum annealing times and the angles of QAOA to derive a lower bound on the number of rounds of QAOA with respect to the guaranteed approximation ratio. We apply and calculate this bound with Grover-style mixing unitaries and (ii) show that this type of QAOA requires at least a polynomial number of rounds to guarantee any constant approximation ratios for most problems. We also (iii) show that the bound depends only on the statistical values of the objective functions, and when the problem can be modeled as a $k$-local Hamiltonian, can be easily estimated from the coefficients of the Hamiltonians. For the conventional transverse field mixer, (iv) our framework gives a trivial lower bound to all bounded occurrence local cost problems and all strictly $k$-local cost Hamiltonians matching known results that constant approximation ratio is obtainable with constant round QAOA for a few optimization problems from these classes. Using our novel proof framework, (v) we recover the Grover lower bound for unstructured search and -- with small modification -- show that our bound applies to any QAOA-style search protocol that starts in the ground state of the mixing unitaries.

Fighting misinformation is a challenging, yet crucial, task. Despite the growing number of experts being involved in manual fact-checking, this activity is time-consuming and cannot keep up with the ever-increasing amount of Fake News produced daily. Hence, automating this process is necessary to help curb misinformation. Thus far, researchers have mainly focused on claim veracity classification. In this paper, instead, we address the generation of justifications (textual explanation of why a claim is classified as either true or false) and benchmark it with novel datasets and advanced baselines. In particular, we focus on summarization approaches over unstructured knowledge (i.e. news articles) and we experiment with several extractive and abstractive strategies. We employed two datasets with different styles and structures, in order to assess the generalizability of our findings. Results show that in justification production summarization benefits from the claim information, and, in particular, that a claim-driven extractive step improves abstractive summarization performances. Finally, we show that although cross-dataset experiments suffer from performance degradation, a unique model trained on a combination of the two datasets is able to retain style information in an efficient manner.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司