亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers energy-aware route planning for a battery-constrained robot operating in environments with multiple recharging depots. The robot has a battery discharge time $D$, and it should visit the recharging depots at most every $D$ time units to not run out of charge. The objective is to minimize robot's travel time while ensuring it visits all task locations in the environment. We present a $O(\log D)$ approximation algorithm for this problem. We also present heuristic improvements to the approximation algorithm and assess its performance on instances from TSPLIB, comparing it to an optimal solution obtained through Integer Linear Programming (ILP). The simulation results demonstrate that, despite a more than $20$-fold reduction in runtime, the proposed algorithm provides solutions that are, on average, within $31\%$ of the ILP solution.

相關內容

歸納邏輯程序設計(ILP)是機器學習的一個分支,它依賴于邏輯程序作為一種統一的表示語言來表達例子、背景知識和假設。基于一階邏輯的ILP具有很強的表示形式,為多關系學習和數據挖掘提供了一種很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是學習結構化或半結構化關系數據的首要國際論壇。最初專注于邏輯程序的歸納,多年來,它大大擴展了研究范圍,并歡迎在邏輯學習、多關系數據挖掘、統計關系學習、圖形和樹挖掘等各個方面作出貢獻,學習其他(非命題)基于邏輯的知識表示框架,探索統計學習和其他概率方法的交叉點。官網鏈接: · 機器人 · GNN · 可辨認的 · SLIP ·
2023 年 11 月 17 日

This paper introduces the TacFR-Gripper, a reconfigurable Fin Ray-based soft and compliant robotic gripper equipped with tactile skin, which can be used for dexterous in-hand manipulation tasks. This gripper can adaptively grasp objects of diverse shapes and stiffness levels. An array of Force Sensitive Resistor (FSR) sensors is embedded within the robotic finger to serve as the tactile skin, enabling the robot to perceive contact information during manipulation. We provide theoretical analysis for gripper design, including kinematic analysis, workspace analysis, and finite element analysis to identify the relationship between the gripper's load and its deformation. Moreover, we implemented a Graph Neural Network (GNN)-based tactile perception approach to enable reliable grasping without accidental slip or excessive force. Three physical experiments were conducted to quantify the performance of the TacFR-Gripper. These experiments aimed to i) assess the grasp success rate across various everyday objects through different configurations, ii) verify the effectiveness of tactile skin with the GNN algorithm in grasping, iii) evaluate the gripper's in-hand manipulation capabilities for object pose control. The experimental results indicate that the TacFR-Gripper can grasp a wide range of complex-shaped objects with a high success rate and deliver dexterous in-hand manipulation. Additionally, the integration of tactile skin with the GNN algorithm enhances grasp stability by incorporating tactile feedback during manipulations. For more details of this project, please view our website: //sites.google.com/view/tacfr-gripper/homepage.

This paper investigates an emerging cache side channel attack defense approach involving the use of hardware performance counters (HPCs). These counters monitor microarchitectural events and analyze statistical deviations to differentiate between malicious and benign software. With numerous proposals and promising reported results, we seek to investigate whether published HPC-based detection methods are evaluated in a proper setting and under the right assumptions, such that their quality can be ensured for real-word deployment against cache side-channel attacks. To achieve this goal, this paper presents a comprehensive evaluation and scrutiny of existing literature on the subject matter in a form of a survey, accompanied by experimental evidences to support our evaluation.

Due to the limited availability of data, existing few-shot learning methods trained from scratch fail to achieve satisfactory performance. In contrast, large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot capabilities. To enhance the performance of pre-trained models for downstream tasks, fine-tuning the model on downstream data is frequently necessary. However, fine-tuning the pre-trained model leads to a decrease in its generalizability in the presence of distribution shift, while the limited number of samples in few-shot learning makes the model highly susceptible to overfitting. Consequently, existing methods for fine-tuning few-shot learning primarily focus on fine-tuning the model's classification head or introducing additional structure. In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align). Our method aims to bolster the model's generalizability by preserving the consistency of spurious features across the fine-tuning process. Extensive experimental results validate the efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements. Our code can be found in //github.com/skingorz/FD-Align.

Implementing precise detection of oil leaks in peak load equipment through image analysis can significantly enhance inspection quality and ensure the system's safety and reliability. However, challenges such as varying shapes of oil-stained regions, background noise, and fluctuating lighting conditions complicate the detection process. To address this, the integration of logical rule-based discrimination into image recognition has been proposed. This approach involves recognizing the spatial relationships among objects to semantically segment images of oil spills using a Mask RCNN network. The process begins with histogram equalization to enhance the original image, followed by the use of Mask RCNN to identify the preliminary positions and outlines of oil tanks, the ground, and areas of potential oil contamination. Subsequent to this identification, the spatial relationships between these objects are analyzed. Logical rules are then applied to ascertain whether the suspected areas are indeed oil spills. This method's effectiveness has been confirmed by testing on images captured from peak power equipment in the field. The results indicate that this approach can adeptly tackle the challenges in identifying oil-contaminated areas, showing a substantial improvement in accuracy compared to existing methods.

Learning-based vehicle planning is receiving increasing attention with the emergence of diverse driving simulators and large-scale driving datasets. While offline reinforcement learning (RL) is well suited for these safety-critical tasks, it still struggles to plan over extended periods. In this work, we present a skill-based framework that enhances offline RL to overcome the long-horizon vehicle planning challenge. Specifically, we design a variational autoencoder (VAE) to learn skills from offline demonstrations. To mitigate posterior collapse of common VAEs, we introduce a two-branch sequence encoder to capture both discrete options and continuous variations of the complex driving skills. The final policy treats learned skills as actions and can be trained by any off-the-shelf offline RL algorithms. This facilitates a shift in focus from per-step actions to temporally extended skills, thereby enabling long-term reasoning into the future. Extensive results on CARLA prove that our model consistently outperforms strong baselines at both training and new scenarios. Additional visualizations and experiments demonstrate the interpretability and transferability of extracted skills.

We present succinct labeling schemes for answering connectivity queries in graphs subject to a specified number of vertex failures. An $f$-vertex/edge fault tolerant ($f$-V/EFT) connectivity labeling is a scheme that produces succinct labels for the vertices (and possibly to the edges) of an $n$-vertex graph $G$, such that given only the labels of two vertices $s,t$ and of at most $f$ faulty vertices/edges $F$, one can infer if $s$ and $t$ are connected in $G-F$. The primary complexity measure is the maximum label length (in bits). The $f$-EFT setting is relatively well understood: [Dory and Parter, PODC 2021] gave a randomized scheme with succinct labels of $O(\log^3 n)$ bits, which was subsequently derandomized by [Izumi et al., PODC 2023] with $\tilde{O}(f^2)$-bit labels. As both noted, handling vertex faults is more challenging. The known bounds for the $f$-VFT setting are far away: [Parter and Petruschka, DISC 2022] gave $\tilde{O}(n^{1-1/2^{\Theta(f)}})$-bit labels, which is linear in $n$ already for $f =\Omega(\log\log n)$. In this work we present an efficient $f$-VFT connectivity labeling scheme using $poly(f, \log n)$ bits. Specifically, we present a randomized scheme with $O(f^3 \log^5 n)$-bit labels, and a derandomized version with $O(f^7 \log^{13} n)$-bit labels, compared to an $\Omega(f)$-bit lower bound on the required label length. Our schemes are based on a new low-degree graph decomposition that improves on [Duan and Pettie, SODA 2017], and facilitates its distributed representation into labels. Finally, we show that our labels naturally yield routing schemes avoiding a given set of at most $f$ vertex failures with table and header sizes of only $poly(f,\log n)$ bits. This improves significantly over the linear size bounds implied by the EFT routing scheme of Dory and Parter.

Human-robot interaction (HRI) research is progressively addressing multi-party scenarios, where a robot interacts with more than one human user at the same time. Conversely, research is still at an early stage for human-robot collaboration. The use of machine learning techniques to handle such type of collaboration requires data that are less feasible to produce than in a typical HRC setup. This work outlines scenarios of concurrent tasks for non-dyadic HRC applications. Based upon these concepts, this study also proposes an alternative way of gathering data regarding multi-user activity, by collecting data related to single users and merging them in post-processing, to reduce the effort involved in producing recordings of pair settings. To validate this statement, 3D skeleton poses of activity of single users were collected and merged in pairs. After this, such datapoints were used to separately train a long short-term memory (LSTM) network and a variational autoencoder (VAE) composed of spatio-temporal graph convolutional networks (STGCN) to recognise the joint activities of the pairs of people. The results showed that it is possible to make use of data collected in this way for pair HRC settings and get similar performances compared to using training data regarding groups of users recorded under the same settings, relieving from the technical difficulties involved in producing these data. The related code and collected data are publicly available.

Exploring the application of powerful large language models (LLMs) on the fundamental named entity recognition (NER) task has drawn much attention recently. This work aims to investigate the possibilities of pushing the boundary of zero-shot NER with LLM via a training-free self-improving strategy. We propose a self-improving framework, which utilize an unlabeled corpus to stimulate the self-learning ability of LLMs on NER. First, we use LLM to make predictions on the unlabeled corpus and obtain the self-annotated data. Second, we explore various strategies to select reliable samples from the self-annotated dataset as demonstrations, considering the similarity, diversity and reliability of demonstrations. Finally, we conduct inference for the test query via in-context learning with the selected self-annotated demonstrations. Through comprehensive experimental analysis, our study yielded the following findings: (1) The self-improving framework further pushes the boundary of zero-shot NER with LLMs, and achieves an obvious performance improvement; (2) Iterative self-improving or naively increasing the size of unlabeled corpus does not guarantee improvements; (3) There might still be space for improvement via more advanced strategy for reliable entity selection.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司