亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image classification/image recognition, speech recognition, time series analysis, game intelligence, and computational advertising to numerical approximations of partial differential equations (PDEs). Such numerical simulations suggest that ANNs have the capacity to very efficiently approximate high-dimensional functions and, especially, indicate that ANNs seem to admit the fundamental power to overcome the curse of dimensionality when approximating the high-dimensional functions appearing in the above named computational problems. There are a series of rigorous mathematical approximation results for ANNs in the scientific literature. Some of them prove convergence without convergence rates and some even rigorously establish convergence rates but there are only a few special cases where mathematical results can rigorously explain the empirical success of ANNs when approximating high-dimensional functions. The key contribution of this article is to disclose that ANNs can efficiently approximate high-dimensional functions in the case of numerical approximations of Black-Scholes PDEs. More precisely, this work reveals that the number of required parameters of an ANN to approximate the solution of the Black-Scholes PDE grows at most polynomially in both the reciprocal of the prescribed approximation accuracy $\varepsilon > 0$ and the PDE dimension $d \in \mathbb{N}$. We thereby prove, for the first time, that ANNs do indeed overcome the curse of dimensionality in the numerical approximation of Black-Scholes PDEs.

相關內容

New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.

We contribute to a better understanding of the class of functions that can be represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning any function. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). As a by-product of our investigations, we settle an old conjecture about piecewise linear functions by Wang and Sun (2005) in the affirmative. We also present upper bounds on the sizes of neural networks required to represent functions with logarithmic depth.

Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: 1) Conventional GP inference scales $O(N^{3})$ with respect to the number of observations; 2) Updating a GP model sequentially is not trivial; and 3) Covariance kernels typically enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data. To demonstrate the utility of our proposed online Gaussian process mixture-of-experts approach in applied settings, we show that we can sucessfully implement an optimization algorithm using online Gaussian process bandits.

The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.

We investigate the problem of bandits with expert advice when the experts are fixed and known distributions over the actions. Improving on previous analyses, we show that the regret in this setting is controlled by information-theoretic quantities that measure the similarity between experts. In some natural special cases, this allows us to obtain the first regret bound for EXP4 that can get arbitrarily close to zero if the experts are similar enough. While for a different algorithm, we provide another bound that describes the similarity between the experts in terms of the KL-divergence, and we show that this bound can be smaller than the one of EXP4 in some cases. Additionally, we provide lower bounds for certain classes of experts showing that the algorithms we analyzed are nearly optimal in some cases.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司