Human communities have self-organizing properties that give rise to very specific natural grouping patterns, reflected in the Dunbar Number and its layered structure (a Dunbar Graph). Since work-groups are necessarily also social groups, we might expect the same principles to apply here as well. One factor likely to be important in limiting the size of groups is that conflicts typically escalate with the number of people involved. Here we analyse Wikipedia editing histories across a wide range of topics to show that there is an emergent coherence in the size of groups formed transiently to edit the content of subject texts, with two peaks averaging at around $N=8$ for the size corresponding to maximal contention, and at around $N=4$ as a regular team. These values are consistent with the observed sizes of conversational groups, as well as the hierarchical structuring of Dunbar graphs. We use the Promise Theory of trust to suggest a scaling law that may apply to all group distributions based on seeded attraction. In addition to providing further evidence that even natural communities of strangers are self-organising, the results have important implications for the governance of the Wikipedia commons and for the security of all online social platforms and associations.
Combinatorial optimization problems are widespread but inherently challenging due to their discrete nature.The primary limitation of existing methods is that they can only access a small fraction of the solution space at each iteration, resulting in limited efficiency for searching the global optimal. To overcome this challenge, diverging from conventional efforts of expanding the solver's search scope, we focus on enabling information to actively propagate to the solver through heat diffusion. By transforming the target function while preserving its optima, heat diffusion facilitates information flow from distant regions to the solver, providing more efficient navigation. Utilizing heat diffusion, we propose a framework for solving general combinatorial optimization problems. The proposed methodology demonstrates superior performance across a range of the most challenging and widely encountered combinatorial optimizations. Echoing recent advancements in harnessing thermodynamics for generative artificial intelligence, our study further reveals its significant potential in advancing combinatorial optimization.
Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing Large Language Models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs.
Developing large-scale distributed methods that are robust to the presence of adversarial or corrupted workers is an important part of making such methods practical for real-world problems. In this paper, we propose an iterative approach that is adversary-tolerant for convex optimization problems. By leveraging simple statistics, our method ensures convergence and is capable of adapting to adversarial distributions. Additionally, the efficiency of the proposed methods for solving convex problems is shown in simulations with the presence of adversaries. Through simulations, we demonstrate the efficiency of our approach in the presence of adversaries and its ability to identify adversarial workers with high accuracy and tolerate varying levels of adversary rates.
Scene stylization extends the work of neural style transfer to three spatial dimensions. A vital challenge in this problem is to maintain the uniformity of the stylized appearance across a multi-view setting. A vast majority of the previous works achieve this by optimizing the scene with a specific style image. In contrast, we propose a novel architecture trained on a collection of style images, that at test time produces high quality stylized novel views. Our work builds up on the framework of 3D Gaussian splatting. For a given scene, we take the pretrained Gaussians and process them using a multi resolution hash grid and a tiny MLP to obtain the conditional stylised views. The explicit nature of 3D Gaussians give us inherent advantages over NeRF-based methods including geometric consistency, along with having a fast training and rendering regime. This enables our method to be useful for vast practical use cases such as in augmented or virtual reality applications. Through our experiments, we show our methods achieve state-of-the-art performance with superior visual quality on various indoor and outdoor real-world data.
Machine learning (ML) and artificial intelligence (AI) approaches are often criticized for their inherent bias and for their lack of control, accountability, and transparency. Consequently, regulatory bodies struggle with containing this technology's potential negative side effects. High-level requirements such as fairness and robustness need to be formalized into concrete specification metrics, imperfect proxies that capture isolated aspects of the underlying requirements. Given possible trade-offs between different metrics and their vulnerability to over-optimization, integrating specification metrics in system development processes is not trivial. This paper defines specification overfitting, a scenario where systems focus excessively on specified metrics to the detriment of high-level requirements and task performance. We present an extensive literature survey to categorize how researchers propose, measure, and optimize specification metrics in several AI fields (e.g., natural language processing, computer vision, reinforcement learning). Using a keyword-based search on papers from major AI conferences and journals between 2018 and mid-2023, we identify and analyze 74 papers that propose or optimize specification metrics. We find that although most papers implicitly address specification overfitting (e.g., by reporting more than one specification metric), they rarely discuss which role specification metrics should play in system development or explicitly define the scope and assumptions behind metric formulations.
Humans possess a remarkable ability to react to unpredictable perturbations through immediate mechanical responses, which harness the visco-elastic properties of muscles to maintain balance. Inspired by this behaviour, we propose a novel design of a robotic leg utilising fibre jammed structures as passive compliant mechanisms to achieve variable joint stiffness and damping. We developed multi-material fibre jammed tendons with tunable mechanical properties, which can be 3D printed in one-go without need for assembly. Through extensive numerical simulations and experimentation, we demonstrate the usefulness of these tendons for shock absorbance and maintaining joint stability. We investigate how they could be used effectively in a multi-joint robotic leg by evaluating the relative contribution of each tendon to the overall stiffness of the leg. Further, we showcase the potential of these jammed structures for legged locomotion, highlighting how morphological properties of the tendons can be used to enhance stability in robotic legs.
While Online Gradient Descent and other no-regret learning procedures are known to efficiently converge to coarse correlated equilibrium in games where each agent's utility is concave in their own strategy, this is not the case when the utilities are non-concave, a situation that is common in machine learning applications where the agents' strategies are parameterized by deep neural networks, or the agents' utilities are computed by a neural network, or both. Indeed, non-concave games present a host of game-theoretic and optimization challenges: (i) Nash equilibria may fail to exist; (ii) local Nash equilibria exist but are intractable; and (iii) mixed Nash, correlated, and coarse correlated equilibria have infinite support in general, and are intractable. To sidestep these challenges we propose a new solution concept, termed $(\varepsilon, \Phi(\delta))$-local equilibrium, which generalizes local Nash equilibrium in non-concave games, as well as (coarse) correlated equilibrium in concave games. Importantly, we show that two instantiations of this solution concept capture the convergence guarantees of Online Gradient Descent and no-regret learning, which we show efficiently converge to this type of equilibrium in non-concave games with smooth utilities.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.