亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-antenna relays and intelligent reflecting surfaces (IRSs) have been utilized to construct favorable channels to improve the performance of wireless systems. A common feature between relay systems and IRS-aided systems is the two-hop multiple-input multiple-output (MIMO) channel. As a result, the mutual information (MI) of two-hop MIMO channels has been widely investigated with very engaging results. However, a rigorous investigation on the fundamental limits of two-hop MIMO channels, i.e., the first and second-order analysis, is not yet available in the literature, due to the difficulties caused by the two-hop (product) channel and the noise introduced by the relay (active IRS). In this paper, we employ large-scale random matrix theory (RMT), specifically Gaussian tools, to derive the closed-form deterministic approximation for the mean and variance of the MI. Additionally, we determine the convergence rate for the mean, variance and the characteristic function of the MI, and prove the asymptotic Gaussianity. Furthermore, we also investigate the analytical properties of the fundamental equations that describe the closed-form approximation and prove the existence and uniqueness of the solution. An iterative algorithm is then proposed to obtain the solution for the fundamental equations. Numerical results validate the accuracy of the theoretical analysis.

相關內容

Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals \emph{zero} and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper's wiretapping ability.

We consider the penalized distributionally robust optimization (DRO) problem with a closed, convex uncertainty set, a setting that encompasses the $f$-DRO, Wasserstein-DRO, and spectral/$L$-risk formulations used in practice. We present Drago, a stochastic primal-dual algorithm that achieves a state-of-the-art linear convergence rate on strongly convex-strongly concave DRO problems. The method combines both randomized and cyclic components with mini-batching, which effectively handles the unique asymmetric nature of the primal and dual problems in DRO. We support our theoretical results with numerical benchmarks in classification and regression.

The exploration of molecular systems' potential energy surface is important for comprehending their complex behaviors, particularly through identifying various metastable states. However, the transition between these states is often hindered by substantial energy barriers, demanding prolonged molecular simulations that consume considerable computational efforts. Our study introduces the GradNav algorithm, which enhances the exploration of the energy surface, accelerating the reconstruction of the potential energy surface (PES). This algorithm employs a strategy of initiating short simulation runs from updated starting points, derived from prior observations, to effectively navigate across potential barriers and explore new regions. To evaluate GradNav's performance, we introduce two metrics: the deepest well escape frame (DWEF) and the search success initialization ratio (SSIR). Through applications on Langevin dynamics within Mueller-type potential energy surfaces and molecular dynamics simulations of the Fs-Peptide protein, these metrics demonstrate GradNav's enhanced ability to escape deep energy wells, as shown by reduced DWEF values, and its reduced reliance on initial conditions, highlighted by increased SSIR values. Consequently, this improved exploration capability enables more precise energy estimations from simulation trajectories.

The problem of distributed optimization requires a group of networked agents to compute a parameter that minimizes the average of their local cost functions. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to "Byzantine" agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or assume certain statistical properties of the functions at the agents. In this paper, we provide two resilient, scalable, distributed optimization algorithms for multi-dimensional functions. Our schemes involve two filters, (1) a distance-based filter and (2) a min-max filter, which each remove neighborhood states that are extreme (defined precisely in our algorithms) at each iteration. We show that these algorithms can mitigate the impact of up to $F$ (unknown) Byzantine agents in the neighborhood of each regular agent. In particular, we show that if the network topology satisfies certain conditions, all of the regular agents' states are guaranteed to converge to a bounded region that contains the minimizer of the average of the regular agents' functions.

The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.

Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server, while being respectful of privacy. A critical bottleneck in FL is the communication cost. A pivotal strategy to mitigate this burden is \emph{Local Training}, which involves running multiple local stochastic gradient descent iterations between communication phases. Our work is inspired by the innovative \emph{Scaffnew} algorithm, which has considerably advanced the reduction of communication complexity in FL. We introduce FedComLoc (Federated Compressed and Local Training), integrating practical and effective compression into \emph{Scaffnew} to further enhance communication efficiency. Extensive experiments, using the popular TopK compressor and quantization, demonstrate its prowess in substantially reducing communication overheads in heterogeneous settings.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司