亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized subspace approximation with "matrix sketching" is an effective approach for constructing approximate partial singular value decompositions (SVDs) of large matrices. The performance of such techniques has been extensively analyzed, and very precise estimates on the distribution of the residual errors have been derived. However, our understanding of the accuracy of the computed singular vectors (measured in terms of the canonical angles between the spaces spanned by the exact and the computed singular vectors, respectively) remains relatively limited. In this work, we present bounds and estimates for canonical angles of randomized subspace approximation that can be computed efficiently either a priori or a posterior. Under moderate oversampling in the randomized SVD, our prior probabilistic bounds are asymptotically tight and can be computed efficiently, while bringing a clear insight into the balance between oversampling and power iterations given a fixed budget on the number of matrix-vector multiplications. The numerical experiments demonstrate the empirical effectiveness of these canonical angle bounds and estimates on different matrices under various algorithmic choices for the randomized SVD.

相關內容

We propose an accelerated block proximal linear framework with adaptive momentum (ABPL$^+$) for nonconvex and nonsmooth optimization. We analyze the potential causes of the extrapolation step failing in some algorithms, and resolve this issue by enhancing the comparison process that evaluates the trade-off between the proximal gradient step and the linear extrapolation step in our algorithm. Furthermore, we extends our algorithm to any scenario involving updating block variables with positive integers, allowing each cycle to randomly shuffle the update order of the variable blocks. Additionally, under mild assumptions, we prove that ABPL$^+$ can monotonically decrease the function value without strictly restricting the extrapolation parameters and step size, demonstrates the viability and effectiveness of updating these blocks in a random order, and we also more obviously and intuitively demonstrate that the derivative set of the sequence generated by our algorithm is a critical point set. Moreover, we demonstrate the global convergence as well as the linear and sublinear convergence rates of our algorithm by utilizing the Kurdyka-Lojasiewicz (K{\L}) condition. To enhance the effectiveness and flexibility of our algorithm, we also expand the study to the imprecise version of our algorithm and construct an adaptive extrapolation parameter strategy, which improving its overall performance. We apply our algorithm to multiple non-negative matrix factorization with the $\ell_0$ norm, nonnegative tensor decomposition with the $\ell_0$ norm, and perform extensive numerical experiments to validate its effectiveness and efficiency.

We develop a novel asymptotic theory for local polynomial (quasi-) maximum-likelihood estimators of time-varying parameters in a broad class of nonlinear time series models. Under weak regularity conditions, we show the proposed estimators are consistent and follow normal distributions in large samples. Our conditions impose weaker smoothness and moment conditions on the data-generating process and its likelihood compared to existing theories. Furthermore, the bias terms of the estimators take a simpler form. We demonstrate the usefulness of our general results by applying our theory to local (quasi-)maximum-likelihood estimators of a time-varying VAR's, ARCH and GARCH, and Poisson autogressions. For the first three models, we are able to substantially weaken the conditions found in the existing literature. For the Poisson autogression, existing theories cannot be be applied while our novel approach allows us to analyze it.

The problem of modeling the relationship between univariate distributions and one or more explanatory variables has found increasing interest. Traditional functional data methods cannot be applied directly to distributional data because of their inherent constraints. Modeling distributions as elements of the Wasserstein space, a geodesic metric space equipped with the Wasserstein metric that is related to optimal transport, is attractive for statistical applications. Existing approaches proceed by substituting proxy estimated distributions for the typically unknown response distributions. These estimates are obtained from available data but are problematic when for some of the distributions only few data are available. Such situations are common in practice and cannot be addressed with available approaches, especially when one aims at density estimates. We show how this and other problems associated with density estimation such as tuning parameter selection and bias issues can be side-stepped when covariates are available. We also introduce a novel version of distribution-response regression that is based on empirical measures. By avoiding the preprocessing step of recovering complete individual response distributions, the proposed approach is applicable when the sample size available for some of the distributions is small. In this case, one can still obtain consistent distribution estimates even for distributions with only few data by gaining strength across the entire sample of distributions, while traditional approaches where distributions or densities are estimated individually fail, since sparsely sampled densities cannot be consistently estimated. The proposed model is demonstrated to outperform existing approaches through simulations. Its efficacy is corroborated in two case studies on Environmental Influences on Child Health Outcomes (ECHO) data and eBay auction data.

Existing FL-based approaches are based on the unrealistic assumption that the data on the client-side is fully annotated with ground truths. Furthermore, it is a great challenge how to improve the training efficiency while ensuring the detection accuracy in the highly heterogeneous and resource-constrained IoT networks. Meanwhile, the communication cost between clients and the server is also a problem that can not be ignored. Therefore, in this paper, we propose a Federated Semi-Supervised and Semi-Asynchronous (FedS3A) learning for anomaly detection in IoT networks. First, we consider a more realistic assumption that labeled data is only available at the server, and pseudo-labeling is utilized to implement federated semi-supervised learning, in which a dynamic weight of supervised learning is exploited to balance the supervised learning at the server and unsupervised learning at clients. Then, we propose a semi-asynchronous model update and staleness tolerant distribution scheme to achieve a trade-off between the round efficiency and detection accuracy. Meanwhile, the staleness of local models and the participation frequency of clients are considered to adjust their contributions to the global model. In addition, a group-based aggregation function is proposed to deal with the non-IID distribution of the data. Finally, the difference transmission based on the sparse matrix is adopted to reduce the communication cost. Extensive experimental results show that FedS3A can achieve greater than 98% accuracy even when the data is non-IID and is superior to the classic FL-based algorithms in terms of both detection performance and round efficiency, achieving a win-win situation. Meanwhile, FedS3A successfully reduces the communication cost by higher than 50%.

Conservation laws are key theoretical and practical tools for understanding, characterizing, and modeling nonlinear dynamical systems. However, for many complex systems, the corresponding conserved quantities are difficult to identify, making it hard to analyze their dynamics and build stable predictive models. Current approaches for discovering conservation laws often depend on detailed dynamical information or rely on black box parametric deep learning methods. We instead reformulate this task as a manifold learning problem and propose a non-parametric approach for discovering conserved quantities. We test this new approach on a variety of physical systems and demonstrate that our method is able to both identify the number of conserved quantities and extract their values. Using tools from optimal transport theory and manifold learning, our proposed method provides a direct geometric approach to identifying conservation laws that is both robust and interpretable without requiring an explicit model of the system nor accurate time information.

The solution to partial differential equations using deep learning approaches has shown promising results for several classes of initial and boundary-value problems. However, their ability to surpass, particularly in terms of accuracy, classical discretization methods such as the finite element methods, remains a significant challenge. Deep learning methods usually struggle to reliably decrease the error in their approximate solution. A new methodology to better control the error for deep learning methods is presented here. The main idea consists in computing an initial approximation to the problem using a simple neural network and in estimating, in an iterative manner, a correction by solving the problem for the residual error with a new network of increasing complexity. This sequential reduction of the residual of the partial differential equation allows one to decrease the solution error, which, in some cases, can be reduced to machine precision. The underlying explanation is that the method is able to capture at each level smaller scales of the solution using a new network. Numerical examples in 1D and 2D are presented to demonstrate the effectiveness of the proposed approach. This approach applies not only to physics informed neural networks but to other neural network solvers based on weak or strong formulations of the residual.

Incorporating covariates into functional principal component analysis (PCA) can substantially improve the representation efficiency of the principal components and predictive performance. However, many existing functional PCA methods do not make use of covariates, and those that do often have high computational cost or make overly simplistic assumptions that are violated in practice. In this article, we propose a new framework, called Covariate Dependent Functional Principal Component Analysis (CD-FPCA), in which both the mean and covariance structure depend on covariates. We propose a corresponding estimation algorithm, which makes use of spline basis representations and roughness penalties, and is substantially more computationally efficient than competing approaches of adequate estimation and prediction accuracy. A key aspect of our work is our novel approach for modeling the covariance function and ensuring that it is symmetric positive semi-definite. We demonstrate the advantages of our methodology through a simulation study and an astronomical data analysis.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司