亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cardiac magnetic resonance (CMR) sequences visualise the cardiac function voxel-wise over time. Simultaneously, deep learning-based deformable image registration is able to estimate discrete vector fields which warp one time step of a CMR sequence to the following in a self-supervised manner. However, despite the rich source of information included in these 3D+t vector fields, a standardised interpretation is challenging and the clinical applications remain limited so far. In this work, we show how to efficiently use a deformable vector field to describe the underlying dynamic process of a cardiac cycle in form of a derived 1D motion descriptor. Additionally, based on the expected cardiovascular physiological properties of a contracting or relaxing ventricle, we define a set of rules that enables the identification of five cardiovascular phases including the end-systole (ES) and end-diastole (ED) without the usage of labels. We evaluate the plausibility of the motion descriptor on two challenging multi-disease, -center, -scanner short-axis CMR datasets. First, by reporting quantitative measures such as the periodic frame difference for the extracted phases. Second, by comparing qualitatively the general pattern when we temporally resample and align the motion descriptors of all instances across both datasets. The average periodic frame difference for the ED, ES key phases of our approach is $0.80\pm{0.85}$, $0.69\pm{0.79}$ which is slightly better than the inter-observer variability ($1.07\pm{0.86}$, $0.91\pm{1.6}$) and the supervised baseline method ($1.18\pm{1.91}$, $1.21\pm{1.78}$). Code and labels will be made available on our GitHub repository. //github.com/Cardio-AI/cmr-phase-detection

相關內容

In practical applications, data is used to make decisions in two steps: estimation and optimization. First, a machine learning model estimates parameters for a structural model relating decisions to outcomes. Second, a decision is chosen to optimize the structural model's predicted outcome as if its parameters were correctly estimated. Due to its flexibility and simple implementation, this ``estimate-then-optimize'' approach is often used for data-driven decision-making. Errors in the estimation step can lead estimate-then-optimize to sub-optimal decisions that result in regret, i.e., a difference in value between the decision made and the best decision available with knowledge of the structural model's parameters. We provide a novel bound on this regret for smooth and unconstrained optimization problems. Using this bound, in settings where estimated parameters are linear transformations of sub-Gaussian random vectors, we provide a general procedure for experimental design to minimize the regret resulting from estimate-then-optimize. We demonstrate our approach on simple examples and a pandemic control application.

Many network analysis and graph learning techniques are based on models of random walks which require to infer transition matrices that formalize the underlying stochastic process in an observed graph. For weighted graphs, it is common to estimate the entries of such transition matrices based on the relative weights of edges. However, we are often confronted with incomplete data, which turns the construction of the transition matrix based on a weighted graph into an inference problem. Moreover, we often have access to additional information, which capture topological constraints of the system, i.e. which edges in a weighted graph are (theoretically) possible and which are not, e.g. transportation networks, where we have access to passenger trajectories as well as the physical topology of connections, or a set of social interactions with the underlying social structure. Combining these two different sources of information to infer transition matrices is an open challenge, with implications on the downstream network analysis tasks. Addressing this issue, we show that including knowledge on such topological constraints can improve the inference of transition matrices, especially for small datasets. We derive an analytically tractable Bayesian method that uses repeated interactions and a topological prior to infer transition matrices data-efficiently. We compare it against commonly used frequentist and Bayesian approaches both in synthetic and real-world datasets, and we find that it recovers the transition probabilities with higher accuracy and that it is robust even in cases when the knowledge of the topological constraint is partial. Lastly, we show that this higher accuracy improves the results for downstream network analysis tasks like cluster detection and node ranking, which highlights the practical relevance of our method for analyses of various networked systems.

We consider the problem of finding the matching map between two sets of $d$ dimensional vectors from noisy observations, where the second set contains outliers. The matching map is then an injection, which can be consistently estimated only if the vectors of the second set are well separated. The main result shows that, in the high-dimensional setting, a detection region of unknown injection can be characterized by the sets of vectors for which the inlier-inlier distance is of order at least $d^{1/4}$ and the inlier-outlier distance is of order at least $d^{1/2}$. These rates are achieved using the estimated matching minimizing the sum of logarithms of distances between matched pairs of points. We also prove lower bounds establishing optimality of these rates. Finally, we report results of numerical experiments on both synthetic and real world data that illustrate our theoretical results and provide further insight into the properties of the estimators studied in this work.

Machine learning models built on datasets containing discriminative instances attributed to various underlying factors result in biased and unfair outcomes. It's a well founded and intuitive fact that existing bias mitigation strategies often sacrifice accuracy in order to ensure fairness. But when AI engine's prediction is used for decision making which reflects on revenue or operational efficiency such as credit risk modelling, it would be desirable by the business if accuracy can be somehow reasonably preserved. This conflicting requirement of maintaining accuracy and fairness in AI motivates our research. In this paper, we propose a fresh approach for simultaneous improvement of fairness and accuracy of ML models within a realistic paradigm. The essence of our work is a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training and we further show that such instance removal will have no adverse impact on model accuracy. In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes , an inherent bias gets induced in the dataset, which can be identified and mitigated through our novel scheme. Our experimental evaluation on two open-source datasets demonstrates how the proposed method can mitigate bias along with improving rather than degrading accuracy, while offering certain set of control for end user.

We propose coordinating guiding vector fields to achieve two tasks simultaneously with a team of robots: first, the guidance and navigation of multiple robots to possibly different paths or surfaces typically embedded in 2D or 3D; second, their motion coordination while tracking their prescribed paths or surfaces. The motion coordination is defined by desired parametric displacements between robots on the path or surface. Such a desired displacement is achieved by controlling the virtual coordinates, which correspond to the path or surface's parameters, between guiding vector fields. Rigorous mathematical guarantees underpinned by dynamical systems theory and Lyapunov theory are provided for the effective distributed motion coordination and navigation of robots on paths or surfaces from all initial positions. As an example for practical robotic applications, we derive a control algorithm from the proposed coordinating guiding vector fields for a Dubins-car-like model with actuation saturation. Our proposed algorithm is distributed and scalable to an arbitrary number of robots. Furthermore, extensive illustrative simulations and fixed-wing aircraft outdoor experiments validate the effectiveness and robustness of our algorithm.

Traditional monocular Visual Simultaneous Localization and Mapping (vSLAM) systems can be divided into three categories: those that use features, those that rely on the image itself, and hybrid models. In the case of feature-based methods, new research has evolved to incorporate more information from their environment using geometric primitives beyond points, such as lines and planes. This is because in many environments, which are man-made environments, characterized as Manhattan world, geometric primitives such as lines and planes occupy most of the space in the environment. The exploitation of these schemes can lead to the introduction of algorithms capable of optimizing the trajectory of a Visual SLAM system and also helping to construct an exuberant map. Thus, we present a real-time monocular Visual SLAM system that incorporates real-time methods for line and VP extraction, as well as two strategies that exploit vanishing points to estimate the robot's translation and improve its rotation.Particularly, we build on ORB-SLAM2, which is considered the current state-of-the-art solution in terms of both accuracy and efficiency, and extend its formulation to handle lines and VPs to create two strategies the first optimize the rotation and the second refine the translation part from the known rotation. First, we extract VPs using a real-time method and use them for a global rotation optimization strategy. Second, we present a translation estimation method that takes advantage of last-stage rotation optimization to model a linear system. Finally, we evaluate our system on the TUM RGB-D benchmark and demonstrate that the proposed system achieves state-of-the-art results and runs in real time, and its performance remains close to the original ORB-SLAM2 system

Despite the recent developments in 3D Face Reconstruction from occluded and noisy face images, the performance is still unsatisfactory. Moreover, most existing methods rely on additional dependencies, posing numerous constraints over the training procedure. Therefore, we propose a Self-Supervised RObustifying GUidancE (ROGUE) framework to obtain robustness against occlusions and noise in the face images. The proposed network contains 1) the Guidance Pipeline to obtain the 3D face coefficients for the clean faces and 2) the Robustification Pipeline to acquire the consistency between the estimated coefficients for occluded or noisy images and the clean counterpart. The proposed image- and feature-level loss functions aid the ROGUE learning process without posing additional dependencies. To facilitate model evaluation, we propose two challenging occlusion face datasets, ReaChOcc and SynChOcc, containing real-world and synthetic occlusion-based face images for robustness evaluation. Also, a noisy variant of the test dataset of CelebA is produced for evaluation. Our method outperforms the current state-of-the-art method by large margins (e.g., for the perceptual errors, a reduction of 23.8% for real-world occlusions, 26.4% for synthetic occlusions, and 22.7% for noisy images), demonstrating the effectiveness of the proposed approach. The occlusion datasets and the corresponding evaluation code are released publicly at //github.com/ArcTrinity9/Datasets-ReaChOcc-and-SynChOcc.

This work provides a theoretical analysis for optimally solving the pose estimation problem using total least squares for vector observations from landmark features, which is central to applications involving simultaneous localization and mapping. First, the optimization process is formulated with observation vectors extracted from point-cloud features. Then, error-covariance expressions are derived. The attitude and position estimates obtained via the derived optimization process are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. A fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. This includes more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is verified using Monte Carlo simulations and an experiment with an actual LIDAR to validate the error-covariance analysis.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司