亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Proximal nested sampling was introduced recently to open up Bayesian model selection for high-dimensional problems such as computational imaging. The framework is suitable for models with a log-convex likelihood, which are ubiquitous in the imaging sciences. The purpose of this article is two-fold. First, we review proximal nested sampling in a pedagogical manner in an attempt to elucidate the framework for physical scientists. Second, we show how proximal nested sampling can be extended in an empirical Bayes setting to support data-driven priors, such as deep neural networks learned from training data.

相關內容

Country comparisons using standardized test scores may in some cases be misleading unless we make sure that the potential sample selection bias created by drop-outs and non-enrollment patterns does not alter the analysis. In this paper, I propose an answer to this issue which consists in comparing the counterfactual distribution of achievement (I mean the distribution of achievement if there was hypothetically no selection) and the observed distribution of achievements. If the difference is statistically significant, international comparison measures like means, quantiles, and inequality measures have to be computed using that counterfactual distribution. I identify the quantiles of that latent distribution by readjusting the percentile levels of the observed quantile function of achievement. Because the data on test scores is by nature truncated, I have to rely on auxiliary data to borrow identification power. I finally applied my method to 6 sub-Saharan countries using 6th-grade test scores.

We show that contrary to appearances, Multimodal Type Theory (MTT) over a 2-category M can be interpreted in any M-shaped diagram of categories having, and functors preserving, M-sized limits, without the need for extra left adjoints. This is achieved by a construction called "co-dextrification" that co-freely adds left adjoints to any such diagram, which can then be used to interpret the "context lock" functors of MTT. Furthermore, if any of the functors in the diagram have right adjoints, these can also be internalized in type theory as negative modalities in the style of FitchTT. We introduce the name Multimodal Adjoint Type Theory (MATT) for the resulting combined general modal type theory. In particular, we can interpret MATT in any finite diagram of toposes and geometric morphisms, with positive modalities for inverse image functors and negative modalities for direct image functors.

Recent span-based joint extraction models have demonstrated significant advantages in both entity recognition and relation extraction. These models treat text spans as candidate entities, and span pairs as candidate relationship tuples, achieving state-of-the-art results on datasets like ADE. However, these models encounter a significant number of non-entity spans or irrelevant span pairs during the tasks, impairing model performance significantly. To address this issue, this paper introduces a span-based multitask entity-relation joint extraction model. This approach employs the multitask learning to alleviate the impact of negative samples on entity and relation classifiers. Additionally, we leverage the Intersection over Union(IoU) concept to introduce the positional information into the entity classifier, achieving a span boundary detection. Furthermore, by incorporating the entity Logits predicted by the entity classifier into the embedded representation of entity pairs, the semantic input for the relation classifier is enriched. Experimental results demonstrate that our proposed SpERT.MT model can effectively mitigate the adverse effects of excessive negative samples on the model performance. Furthermore, the model demonstrated commendable F1 scores of 73.61\%, 53.72\%, and 83.72\% on three widely employed public datasets, namely CoNLL04, SciERC, and ADE, respectively.

We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.

Stochastic memoization is a higher-order construct of probabilistic programming languages that is key in Bayesian nonparametrics, a modular approach that allows us to extend models beyond their parametric limitations and compose them in an elegant and principled manner. Stochastic memoization is simple and useful in practice, but semantically elusive, particularly regarding dataflow transformations. As the naive implementation resorts to the state monad, which is not commutative, it is not clear if stochastic memoization preserves the dataflow property -- i.e., whether we can reorder the lines of a program without changing its semantics, provided the dataflow graph is preserved. In this paper, we give an operational and categorical semantics to stochastic memoization and name generation in the context of a minimal probabilistic programming language, for a restricted class of functions. Our contribution is a first model of stochastic memoization of constant Bernoulli functions with a non-enumerable type, which validates data flow transformations, bridging the gap between traditional probability theory and higher-order probability models. Our model uses a presheaf category and a novel probability monad on it.

A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.

Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine-learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A postprocessing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.

We show that contrary to appearances, Multimodal Type Theory (MTT) over a 2-category M can be interpreted in any M-shaped diagram of categories having, and functors preserving, M-sized limits, without the need for extra left adjoints. This is achieved by a construction called "co-dextrification" that co-freely adds left adjoints to any such diagram, which can then be used to interpret the "context lock" functors of MTT. Furthermore, if any of the functors in the diagram have right adjoints, these can also be internalized in type theory as negative modalities in the style of FitchTT. We introduce the name Multimodal Adjoint Type Theory (MATT) for the resulting combined general modal type theory. In particular, we can interpret MATT in any finite diagram of toposes and geometric morphisms, with positive modalities for inverse image functors and negative modalities for direct image functors.

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

北京阿比特科技有限公司