亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although text-to-speech (TTS) systems have significantly improved, most TTS systems still have limitations in synthesizing speech with appropriate phrasing. For natural speech synthesis, it is important to synthesize the speech with a phrasing structure that groups words into phrases based on semantic information. In this paper, we propose PuaseSpeech, a speech synthesis system with a pre-trained language model and pause-based prosody modeling. First, we introduce a phrasing structure encoder that utilizes a context representation from the pre-trained language model. In the phrasing structure encoder, we extract a speaker-dependent syntactic representation from the context representation and then predict a pause sequence that separates the input text into phrases. Furthermore, we introduce a pause-based word encoder to model word-level prosody based on pause sequence. Experimental results show PauseSpeech outperforms previous models in terms of naturalness. Furthermore, in terms of objective evaluations, we can observe that our proposed methods help the model decrease the distance between ground-truth and synthesized speech. Audio samples are available at //jisang93.github.io/pausespeech-demo/.

相關內容

語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng)(Speech Synthesis),也稱為文語(yu)(yu)(yu)轉換(huan)(huan)(Text-to-Speech, TTS,它是(shi)將任意的(de)(de)(de)(de)(de)輸入(ru)文本(ben)轉換(huan)(huan)成(cheng)自然(ran)流暢的(de)(de)(de)(de)(de)語(yu)(yu)(yu)音(yin)(yin)輸出(chu)。語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng)涉(she)及到人(ren)工智(zhi)能、心理(li)學(xue)、聲學(xue)、語(yu)(yu)(yu)言(yan)學(xue)、數(shu)字信號處理(li)、計(ji)算機科學(xue)等(deng)多(duo)個(ge)學(xue)科技(ji)(ji)術,是(shi)信息(xi)處理(li)領域中的(de)(de)(de)(de)(de)一項前沿技(ji)(ji)術。 隨著計(ji)算機技(ji)(ji)術的(de)(de)(de)(de)(de)不斷提高,語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng)技(ji)(ji)術從早期的(de)(de)(de)(de)(de)共振峰合(he)成(cheng),逐步發展為波形拼接合(he)成(cheng)和統計(ji)參數(shu)語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng),再發展到混合(he)語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng);合(he)成(cheng)語(yu)(yu)(yu)音(yin)(yin)的(de)(de)(de)(de)(de)質量(liang)、自然(ran)度(du)已經得到明顯提高,基(ji)本(ben)能滿足一些(xie)特(te)定場(chang)合(he)的(de)(de)(de)(de)(de)應(ying)用(yong)需(xu)求。目前,語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng)技(ji)(ji)術在銀行、醫院(yuan)等(deng)的(de)(de)(de)(de)(de)信息(xi)播報系統、汽車導航系統、自動應(ying)答(da)呼叫(jiao)中心等(deng)都有廣泛應(ying)用(yong),取得了巨大的(de)(de)(de)(de)(de)經濟(ji)效(xiao)益。 另外,隨著智(zhi)能手機、MP3、PDA 等(deng)與我(wo)們生(sheng)活密切相關的(de)(de)(de)(de)(de)媒介的(de)(de)(de)(de)(de)大量(liang)涌現,語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng)的(de)(de)(de)(de)(de)應(ying)用(yong)也在逐漸(jian)向娛樂、語(yu)(yu)(yu)音(yin)(yin)教學(xue)、康(kang)復治(zhi)療等(deng)領域深入(ru)。可以說語(yu)(yu)(yu)音(yin)(yin)合(he)成(cheng)正在影響著人(ren)們生(sheng)活的(de)(de)(de)(de)(de)方方面(mian)(mian)面(mian)(mian)。

One predominant challenge in additive manufacturing (AM) is to achieve specific material properties by manipulating manufacturing process parameters during the runtime. Such manipulation tends to increase the computational load imposed on existing simulation tools employed in AM. The goal of the present work is to construct a fast and accurate reduced-order model (ROM) for an AM model developed within the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, ultimately reducing the time/cost of AM control and optimization processes. Our adoption of the operator learning (OL) approach enabled us to learn a family of differential equations produced by altering process variables in the laser's Gaussian point heat source. More specifically, we used the Fourier neural operator (FNO) and deep operator network (DeepONet) to develop ROMs for time-dependent responses. Furthermore, we benchmarked the performance of these OL methods against a conventional deep neural network (DNN)-based ROM. Ultimately, we found that OL methods offer comparable performance and, in terms of accuracy and generalizability, even outperform DNN at predicting scalar model responses. The DNN-based ROM afforded the fastest training time. Furthermore, all the ROMs were faster than the original MOOSE model yet still provided accurate predictions. FNO had a smaller mean prediction error than DeepONet, with a larger variance for time-dependent responses. Unlike DNN, both FNO and DeepONet were able to simulate time series data without the need for dimensionality reduction techniques. The present work can help facilitate the AM optimization process by enabling faster execution of simulation tools while still preserving evaluation accuracy.

Aspect-Opinion Pair Extraction (AOPE) from Chinese financial texts is a specialized task in fine-grained text sentiment analysis. The main objective is to extract aspect terms and opinion terms simultaneously from a diverse range of financial texts. Previous studies have mainly focused on developing grid annotation schemes within grid-based models to facilitate this extraction process. However, these methods often rely on character-level (token-level) feature encoding, which may overlook the logical relationships between Chinese characters within words. To address this limitation, we propose a novel method called Graph-based Character-level Grid Tagging Scheme (GCGTS). The GCGTS method explicitly incorporates syntactic structure using Graph Convolutional Networks (GCN) and unifies the encoding of characters within the same syntactic semantic unit (Chinese word level). Additionally, we introduce an image convolutional structure into the grid model to better capture the local relationships between characters within evaluation units. This innovative structure reduces the excessive reliance on pre-trained language models and emphasizes the modeling of structure and local relationships, thereby improving the performance of the model on Chinese financial texts. Through comparative experiments with advanced models such as Synchronous Double-channel Recurrent Network (SDRN) and Grid Tagging Scheme (GTS), the proposed GCGTS model demonstrates significant improvements in performance.

As a crucial infrastructure of intelligent mobile robots, LiDAR-Inertial odometry (LIO) provides the basic capability of state estimation by tracking LiDAR scans. The high-accuracy tracking generally involves the kNN search, which is used with minimizing the point-to-plane distance. The cost for this, however, is maintaining a large local map and performing kNN plane fit for each point. In this work, we reduce both time and space complexity of LIO by saving these unnecessary costs. Technically, we design a plane pre-fitting (PPF) pipeline to track the basic skeleton of the 3D scene. In PPF, planes are not fitted individually for each scan, let alone for each point, but are updated incrementally as the scene 'flows'. Unlike kNN, the PPF is more robust to noisy and non-strict planes with our iterative Principal Component Analyse (iPCA) refinement. Moreover, a simple yet effective sandwich layer is introduced to eliminate false point-to-plane matches. Our method was extensively tested on a total number of 22 sequences across 5 open datasets, and evaluated in 3 existing state-of-the-art LIO systems. By contrast, LIO-PPF can consume only 36% of the original local map size to achieve up to 4x faster residual computing and 1.92x overall FPS, while maintaining the same level of accuracy. We fully open source our implementation at //github.com/xingyuuchen/LIO-PPF.

Weakly-supervised image segmentation has recently attracted increasing research attentions, aiming to avoid the expensive pixel-wise labeling. In this paper, we present an effective method, namely Point2Mask, to achieve high-quality panoptic prediction using only a single random point annotation per target for training. Specifically, we formulate the panoptic pseudo-mask generation as an Optimal Transport (OT) problem, where each ground-truth (gt) point label and pixel sample are defined as the label supplier and consumer, respectively. The transportation cost is calculated by the introduced task-oriented maps, which focus on the category-wise and instance-wise differences among the various thing and stuff targets. Furthermore, a centroid-based scheme is proposed to set the accurate unit number for each gt point supplier. Hence, the pseudo-mask generation is converted into finding the optimal transport plan at a globally minimal transportation cost, which can be solved via the Sinkhorn-Knopp Iteration. Experimental results on Pascal VOC and COCO demonstrate the promising performance of our proposed Point2Mask approach to point-supervised panoptic segmentation. Source code is available at: //github.com/LiWentomng/Point2Mask.

Multispectral pedestrian detection achieves better visibility in challenging conditions and thus has a broad application in various tasks, for which both the accuracy and computational cost are of paramount importance. Most existing approaches treat RGB and infrared modalities equally, typically adopting two symmetrical CNN backbones for multimodal feature extraction, which ignores the substantial differences between modalities and brings great difficulty for the reduction of the computational cost as well as effective crossmodal fusion. In this work, we propose a novel and efficient framework named WCCNet that is able to differentially extract rich features of different spectra with lower computational complexity and semantically rearranges these features for effective crossmodal fusion. Specifically, the discrete wavelet transform (DWT) allowing fast inference and training speed is embedded to construct a dual-stream backbone for efficient feature extraction. The DWT layers of WCCNet extract frequency components for infrared modality, while the CNN layers extract spatial-domain features for RGB modality. This methodology not only significantly reduces the computational complexity, but also improves the extraction of infrared features to facilitate the subsequent crossmodal fusion. Based on the well extracted features, we elaborately design the crossmodal rearranging fusion module (CMRF), which can mitigate spatial misalignment and merge semantically complementary features of spatially-related local regions to amplify the crossmodal complementary information. We conduct comprehensive evaluations on KAIST and FLIR benchmarks, in which WCCNet outperforms state-of-the-art methods with considerable computational efficiency and competitive accuracy. We also perform the ablation study and analyze thoroughly the impact of different components on the performance of WCCNet.

Deep learning (DL) methods have been widely applied to anomaly-based network intrusion detection system (NIDS) to detect malicious traffic. To expand the usage scenarios of DL-based methods, federated learning (FL) allows multiple users to train a global model on the basis of respecting individual data privacy. However, it has not yet been systematically evaluated how robust FL-based NIDSs are against existing privacy attacks under existing defenses. To address this issue, we propose two privacy evaluation metrics designed for FL-based NIDSs, including (1) privacy score that evaluates the similarity between the original and recovered traffic features using reconstruction attacks, and (2) evasion rate against NIDSs using adversarial attack with the recovered traffic. We conduct experiments to illustrate that existing defenses provide little protection and the corresponding adversarial traffic can even evade the SOTA NIDS Kitsune. To defend against such attacks and build a more robust FL-based NIDS, we further propose FedDef, a novel optimization-based input perturbation defense strategy with theoretical guarantee. It achieves both high utility by minimizing the gradient distance and strong privacy protection by maximizing the input distance. We experimentally evaluate four existing defenses on four datasets and show that our defense outperforms all the baselines in terms of privacy protection with up to 7 times higher privacy score, while maintaining model accuracy loss within 3% under optimal parameter combination.

Graph neural networks (GNNs) have gained wide popularity in recommender systems due to their capability to capture higher-order structure information among the nodes of users and items. However, these methods need to collect personal interaction data between a user and the corresponding items and then model them in a central server, which would break the privacy laws such as GDPR. So far, no existing work can construct a global graph without leaking each user's private interaction data (i.e., his or her subgraph). In this paper, we are the first to design a novel lossless federated recommendation framework based on GNN, which achieves full-graph training with complete high-order structure information, enabling the training process to be equivalent to the corresponding un-federated counterpart. In addition, we use LightGCN to instantiate an example of our framework and show its equivalence.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

北京阿比特科技有限公司