亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Numerical simulations with rigid particles, drops or vesicles constitute some examples that involve 3D objects with spherical topology. When the numerical method is based on boundary integral equations, the error in using a regular quadrature rule to approximate the layer potentials that appear in the formulation will increase rapidly as the evaluation point approaches the surface and the integrand becomes sharply peaked. To determine when the accuracy becomes insufficient, and a more costly special quadrature method should be used, error estimates are needed. In this paper we present quadrature error estimates for layer potentials evaluated near surfaces of genus 0, parametrized using a polar and an azimuthal angle, discretized by a combination of the Gauss-Legendre and the trapezoidal quadrature rules. The error estimates involve no unknown coefficients, but complex valued roots of a specified distance function. The evaluation of the error estimates in general requires a one dimensional local root-finding procedure, but for specific geometries we obtain analytical results. Based on these explicit solutions, we derive simplified error estimates for layer potentials evaluated near spheres; these simple formulas depend only on the distance from the surface, the radius of the sphere and the number of discretization points. The usefulness of these error estimates is illustrated with numerical examples.

相關內容

As social issues related to gender bias attract closer scrutiny, accurate tools to determine the gender profile of large groups become essential. When explicit data is unavailable, gender is often inferred from names. Current methods follow a strategy whereby individuals of the group, one by one, are assigned a gender label or probability based on gender-name correlations observed in the population at large. We show that this strategy is logically inconsistent and has practical shortcomings, the most notable of which is the systematic underestimation of gender bias. We introduce a global inference strategy that estimates gender composition according to the context of the full list of names. The tool suffers from no intrinsic methodological effects, is robust against errors, easily implemented, and computationally light.

Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications, including those in machine learning, statistics, bioinformatics, economics, and medicine. Despite its popularity in practice, a satisfactory level of understanding of the convergence behavior of Gaussian-gated MoE parameter estimation is far from complete. The underlying reason for this challenge is the inclusion of covariates in the Gaussian gating and expert networks, which leads to their intrinsically complex interactions via partial differential equations with respect to their parameters. We address these issues by designing novel Voronoi loss functions to accurately capture heterogeneity in the maximum likelihood estimator (MLE) for resolving parameter estimation in these models. Our results reveal distinct behaviors of the MLE under two settings: the first setting is when all the location parameters in the Gaussian gating are non-zeros while the second setting is when there exists at least one zero-valued location parameter. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to verify our theoretical results.

Ordinal response model is a popular and commonly used regression for ordered categorical data in a wide range of fields such as medicine and social sciences. However, it is empirically known that the existence of ``outliers'', combinations of the ordered categorical response and covariates that are heterogeneous compared to other pairs, makes the inference with the ordinal response model unreliable. In this article, we prove that the posterior distribution in the ordinal response model does not satisfy the posterior robustness with any link functions, i.e., the posterior cannot ignore the influence of large outliers. Furthermore, to achieve robust Bayesian inference in the ordinal response model, this article defines general posteriors in the ordinal response model with two robust divergences (the density-power and $\gamma$-divergences) based on the framework of the general posterior inference. We also provide an algorithm for generating posterior samples from the proposed posteriors. The robustness of the proposed methods against outliers is clarified from the posterior robustness and the index of robustness based on the Fisher-Rao metric. Through numerical experiments on artificial data and two real datasets, we show that the proposed methods perform better than the ordinary bayesian methods with and without outliers in the data for various link functions.

Several kernel based testing procedures are proposed to solve the problem of model selection in the presence of parameter estimation in a family of candidate models. Extending the two sample test of Gretton et al. (2006), we first provide a way of testing whether some data is drawn from a given parametric model (model specification). Second, we provide a test statistic to decide whether two parametric models are equally valid to describe some data (model comparison), in the spirit of Vuong (1989). All our tests are asymptotically standard normal under the null, even when the true underlying distribution belongs to the competing parametric families.Some simulations illustrate the performance of our tests in terms of power and level.

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

We present a new version of the fast Gauss transform (FGT) for discrete and continuous sources. Classical Hermite expansions are avoided entirely, making use only of the plane-wave representation of the Gaussian kernel and a new hierarchical merging scheme. For continuous source distributions sampled on adaptive tensor-product grids, we exploit the separable structure of the Gaussian kernel to accelerate the computation. For discrete sources, the scheme relies on the nonuniform fast Fourier transform (NUFFT) to construct near field plane wave representations. The scheme has been implemented for either free-space or periodic boundary conditions. In many regimes, the speed is comparable to or better than that of the conventional FFT in work per gridpoint, despite being fully adaptive.

Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.

Wildfire propagation is a highly stochastic process where small changes in environmental conditions (such as wind speed and direction) can lead to large changes in observed behaviour. A traditional approach to quantify uncertainty in fire-front progression is to generate probability maps via ensembles of simulations. However, use of ensembles is typically computationally expensive, which can limit the scope of uncertainty analysis. To address this, we explore the use of a spatio-temporal neural-based modelling approach to directly estimate the likelihood of fire propagation given uncertainty in input parameters. The uncertainty is represented by deliberately perturbing the input weather forecast during model training. The computational load is concentrated in the model training process, which allows larger probability spaces to be explored during deployment. Empirical evaluations indicate that the proposed model achieves comparable fire boundaries to those produced by the traditional SPARK simulation platform, with an overall Jaccard index (similarity score) of 67.4% on a set of 35 simulated fires. When compared to a related neural model (emulator) which was employed to generate probability maps via ensembles of emulated fires, the proposed approach produces competitive Jaccard similarity scores while being approximately an order of magnitude faster.

In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.

When estimating quantities and fields that are difficult to measure directly, such as the fluidity of ice, from point data sources, such as satellite altimetry, it is important to solve a numerical inverse problem that is formulated with Bayesian consistency. Otherwise, the resultant probability density function for the difficult to measure quantity or field will not be appropriately clustered around the truth. In particular, the inverse problem should be formulated by evaluating the numerical solution at the true point locations for direct comparison with the point data source. If the data are first fitted to a gridded or meshed field on the computational grid or mesh, and the inverse problem formulated by comparing the numerical solution to the fitted field, the benefits of additional point data values below the grid density will be lost. We demonstrate, with examples in the fields of groundwater hydrology and glaciology, that a consistent formulation can increase the accuracy of results and aid discourse between modellers and observationalists. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). This new abstraction is well-suited to automation, including automatic differentiation. We demonstrate this through implementation in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint, allowing PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation.

北京阿比特科技有限公司