亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Krylov subspace, which is generated by multiplying a given vector by the matrix of a linear transformation and its successive powers, has been extensively studied in classical optimization literature to design algorithms that converge quickly for large linear inverse problems. For example, the conjugate gradient method (CG), one of the most popular Krylov subspace methods, is based on the idea of minimizing the residual error in the Krylov subspace. However, with the recent advancement of high-performance diffusion solvers for inverse problems, it is not clear how classical wisdom can be synergistically combined with modern diffusion models. In this study, we propose a novel and efficient diffusion sampling strategy that synergistically combine the diffusion sampling and Krylov subspace methods. Specifically, we prove that if the tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG initialized with the denoised data ensures the data consistency update to remain in the tangent space. This negates the need to compute the manifold-constrained gradient (MCG), leading to a more efficient diffusion sampling method. Our method is applicable regardless of the parametrization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.

相關內容

Recently, a mask-based beamformer with attention-based spatial covariance matrix aggregator (ASA) was proposed, which was demonstrated to track moving sources accurately. However, the deep neural network model used in this algorithm is limited to a specific channel configuration, requiring a different model in case a different channel permutation, channel count, or microphone array geometry is considered. Addressing this limitation, in this paper, we investigate three approaches to improve the robustness of the ASA-based tracking method against such variations: incorporating random channel configurations during the training process, employing the transform-average-concatenate (TAC) method to process multi-channel input features (allowing for any channel count and enabling permutation invariance), and utilizing input features that are robust against variations of the channel configuration. Our experiments, conducted using the CHiME-3 and DEMAND datasets, demonstrate improved robustness against mismatches in channel permutations, channel counts, and microphone array geometries compared to the conventional ASA-based tracking method without compromising performance in matched conditions, suggesting that the mask-based beamformer with ASA integrating the proposed approaches has the potential to track moving sources for arbitrary microphone arrays.

We construct a randomized vector quantizer which has a smaller maximum error compared to all known lattice quantizers with the same entropy for dimensions 5, 6, ..., 48, and also has a smaller mean squared error compared to known lattice quantizers with the same entropy for dimensions 35, ..., 48, in the high resolution limit. Moreover, our randomized quantizer has a desirable property that the quantization error is always uniform over the ball and independent of the input. Our construction is based on applying rejection sampling on universal quantization, which allows us to shape the error distribution to be any continuous distribution, not only uniform distributions over basic cells of a lattice as in conventional dithered quantization. We also characterize the high SNR limit of one-shot channel simulation for any additive noise channel under a mild assumption (e.g., the AWGN channel), up to an additive constant of 1.45 bits.

We consider a variant of matrix completion where entries are revealed in a biased manner, adopting a model akin to that introduced by Ma and Chen. Instead of treating this observation bias as a disadvantage, as is typically the case, the goal is to exploit the shared information between the bias and the outcome of interest to improve predictions. Towards this, we consider a natural model where the observation pattern and outcome of interest are driven by the same set of underlying latent or unobserved factors. This leads to a two stage matrix completion algorithm: first, recover (distances between) the latent factors by utilizing matrix completion for the fully observed noisy binary matrix corresponding to the observation pattern; second, utilize the recovered latent factors as features and sparsely observed noisy outcomes as labels to perform non-parametric supervised learning. The finite-sample error rates analysis suggests that, ignoring logarithmic factors, this approach is competitive with the corresponding supervised learning parametric rates. This implies the two-stage method has performance that is comparable to having access to the unobserved latent factors through exploiting the shared information between the bias and outcomes. Through empirical evaluation using a real-world dataset, we find that with this two-stage algorithm, the estimates have 30x smaller mean squared error compared to traditional matrix completion methods, suggesting the utility of the model and the method proposed in this work.

Ordinary differential equation (ODE) is an important tool to study the dynamics of a system of biological and physical processes. A central question in ODE modeling is to infer the significance of individual regulatory effect of one signal variable on another. However, building confidence band for ODE with unknown regulatory relations is challenging, and it remains largely an open question. In this article, we construct post-regularization confidence band for individual regulatory function in ODE with unknown functionals and noisy data observations. Our proposal is the first of its kind, and is built on two novel ingredients. The first is a new localized kernel learning approach that combines reproducing kernel learning with local Taylor approximation, and the second is a new de-biasing method that tackles infinite-dimensional functionals and additional measurement errors. We show that the constructed confidence band has the desired asymptotic coverage probability, and the recovered regulatory network approaches the truth with probability tending to one. We establish the theoretical properties when the number of variables in the system can be either smaller or larger than the number of sampling time points, and we study the regime-switching phenomenon. We demonstrate the efficacy of the proposed method through both simulations and illustrations with two data applications.

Text summarization is the process of condensing a piece of text to fewer sentences, while still preserving its content. Chat transcript, in this context, is a textual copy of a digital or online conversation between a customer (caller) and agent(s). This paper presents an indigenously (locally) developed hybrid method that first combines extractive and abstractive summarization techniques in compressing ill-punctuated or un-punctuated chat transcripts to produce more readable punctuated summaries and then optimizes the overall quality of summarization through reinforcement learning. Extensive testing, evaluations, comparisons, and validation have demonstrated the efficacy of this approach for large-scale deployment of chat transcript summarization, in the absence of manually generated reference (annotated) summaries.

We develop a mesh-based semi-Lagrangian discretization of the time-dependent incompressible Navier-Stokes equations with free boundary conditions recast as a non-linear transport problem for a momentum 1-form. A linearly implicit fully discrete version of the scheme enjoys excellent stability properties in the vanishing viscosity limit and is applicable to inviscid incompressible Euler flows. Conservation of energy and helicity are enforced separately.

Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to $20\times \sim 5000\times$. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.

Propagating state distributions through a generic, uncertain nonlinear dynamical model is known to be intractable and usually begets numerical or analytical approximations. We introduce a method for state prediction, called the Expansion-Compression Unscented Transform, and use it to solve a class of online policy optimization problems. Our proposed algorithm propagates a finite number of sigma points through a state-dependent distribution, which dictates an increase in the number of sigma points at each time step to represent the resulting distribution; this is what we call the expansion operation. To keep the algorithm scalable, we augment the expansion operation with a compression operation based on moment matching, thereby keeping the number of sigma points constant across predictions over multiple time steps. Its performance is empirically shown to be comparable to Monte Carlo but at a much lower computational cost. Under state and control input constraints, the state prediction is subsequently used in tandem with a proposed variant of constrained gradient-descent for online update of policy parameters in a receding horizon fashion. The framework is implemented as a differentiable computational graph for policy training. We showcase our framework for a quadrotor stabilization task as part of a benchmark comparison in safe-control-gym and for optimizing the parameters of a Control Barrier Function based controller in a leader-follower problem.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司