Safe and efficient collaboration among multiple robots in unstructured environments is increasingly critical in the era of Industry 4.0. However, achieving robust and autonomous collaboration among humans and other robots requires modern robotic systems to have effective proximity perception and reactive obstacle avoidance. In this paper, we propose a novel methodology for reactive whole-body obstacle avoidance that ensures conflict-free robot-robot interactions even in dynamic environment. Unlike existing approaches based on Jacobian-type, sampling based or geometric techniques, our methodology leverages the latest deep learning advances and topological manifold learning, enabling it to be readily generalized to other problem settings with high computing efficiency and fast graph traversal techniques. Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact, a significant improvement over traditional industrial cobot settings. To validate our approach, we implement it on a robotic platform consisting of dual 6-DoF robotic arms with optimized proximity sensor placement, capable of working collaboratively with varying levels of interference. Specifically, one arm performs reactive whole-body obstacle avoidance while achieving its pre-determined objective, while the other arm emulates the presence of a human collaborator with independent and potentially adversarial movements. Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.
We propose an efficient, accurate and robust implicit solver for the incompressible Navier-Stokes equations, based on a DG spatial discretization and on the TR-BDF2 method for time discretization. The effectiveness of the method is demonstrated in a number of classical benchmarks, which highlight its superior efficiency with respect to other widely used implicit approaches. The parallel implementation of the proposed method in the framework of the deal.II software package allows for accurate and efficient adaptive simulations in complex geometries, which makes the proposed solver attractive for large scale industrial applications.
The current transformation towards smart manufacturing has led to a growing demand for human-robot collaboration (HRC) in the manufacturing process. Perceiving and understanding the human co-worker's behaviour introduces challenges for collaborative robots to efficiently and effectively perform tasks in unstructured and dynamic environments. Integrating recent data-driven machine vision capabilities into HRC systems is a logical next step in addressing these challenges. However, in these cases, off-the-shelf components struggle due to generalisation limitations. Real-world evaluation is required in order to fully appreciate the maturity and robustness of these approaches. Furthermore, understanding the pure-vision aspects is a crucial first step before combining multiple modalities in order to understand the limitations. In this paper, we propose GoferBot, a novel vision-based semantic HRC system for a real-world assembly task. It is composed of a visual servoing module that reaches and grasps assembly parts in an unstructured multi-instance and dynamic environment, an action recognition module that performs human action prediction for implicit communication, and a visual handover module that uses the perceptual understanding of human behaviour to produce an intuitive and efficient collaborative assembly experience. GoferBot is a novel assembly system that seamlessly integrates all sub-modules by utilising implicit semantic information purely from visual perception.
Robotic ultrasound (US) systems have shown great potential to make US examinations easier and more accurate. Recently, various machine learning techniques have been proposed to realize automatic US image interpretation for robotic US acquisition tasks. However, obtaining large amounts of real US imaging data for training is usually expensive or even unfeasible in some clinical applications. An alternative is to build a simulator to generate synthetic US data for training, but the differences between simulated and real US images may result in poor model performance. This work presents a Sim2Real framework to efficiently learn robotic US image analysis tasks based only on simulated data for real-world deployment. A style transfer module is proposed based on unsupervised contrastive learning and used as a preprocessing step to convert the real US images into the simulation style. Thereafter, a task-relevant model is designed to combine CNNs with vision transformers to generate the task-dependent prediction with improved generalization ability. We demonstrate the effectiveness of our method in an image regression task to predict the probe position based on US images in robotic transesophageal echocardiography (TEE). Our results show that using only simulated US data and a small amount of unlabelled real data for training, our method can achieve comparable performance to semi-supervised and fully supervised learning methods. Moreover, the effectiveness of our previously proposed CT-based US image simulation method is also indirectly confirmed.
Real-time synthesis of legged locomotion maneuvers in challenging industrial settings is still an open problem, requiring simultaneous determination of footsteps locations several steps ahead while generating whole-body motions close to the robot's limits. State estimation and perception errors impose the practical constraint of fast re-planning motions in a model predictive control (MPC) framework. We first observe that the computational limitation of perceptive locomotion pipelines lies in the combinatorics of contact surface selection. Re-planning contact locations on selected surfaces can be accomplished at MPC frequencies (50-100 Hz). Then, whole-body motion generation typically follows a reference trajectory for the robot base to facilitate convergence. We propose removing this constraint to robustly address unforeseen events such as contact slipping, by leveraging a state-of-the-art whole-body MPC (Croccodyl). Our contributions are integrated into a complete framework for perceptive locomotion, validated under diverse terrain conditions, and demonstrated in challenging trials that push the robot's actuation limits, as well as in the ICRA 2023 quadruped challenge simulation.
Collaborative robots can relief human operators from excessive efforts during payload lifting activities. Modelling the human partner allows the design of safe and efficient collaborative strategies. In this paper, we present a control approach for human-robot collaboration based on human monitoring through whole-body wearable sensors, and interaction modelling through coupled rigid-body dynamics. Moreover, a trajectory advancement strategy is proposed, allowing for online adaptation of the robot trajectory depending on the human motion. The resulting framework allows us to perform payload lifting tasks, taking into account the ergonomic requirements of the agents. Validation has been performed in an experimental scenario using the iCub3 humanoid robot and a human subject sensorized with the iFeel wearable system.
This letter addresses the problem of trajectory planning in a marsupial robotic system consisting of an unmanned aerial vehicle (UAV) linked to an unmanned ground vehicle (UGV) through a non-taut tether with controllable length. To the best of our knowledge, this is the first method that addresses the trajectory planning of a marsupial UGV-UAV with a non-taut tether. The objective is to determine a synchronized collision-free trajectory for the three marsupial system agents: UAV, UGV, and tether. First, we present a path planning solution based on optimal Rapidly-exploring Random Trees (RRT*) with novel sampling and steering techniques to speed-up the computation. This algorithm is able to obtain collision-free paths for the UAV and the UGV, taking into account the 3D environment and the tether. Then, the letter presents a trajectory planner based on non-linear least squares. The optimizer takes into account aspects not considered in the path planning, like temporal constraints of the motion imposed by limits on the velocities and accelerations of the robots, or raising the tether's clearance. Simulated and field test results demonstrate that the approach generates obstacle-free, smooth, and feasible trajectories for the marsupial system.
High performance is needed in many computing systems, from batch-managed supercomputers to general-purpose cloud platforms. However, scientific clusters lack elastic parallelism, while clouds cannot offer competitive costs for high-performance applications. In this work, we investigate how modern cloud programming paradigms can bring the elasticity needed to allocate idle resources, decreasing computation costs and improving overall data center efficiency. Function-as-a-Service (FaaS) brings the pay-as-you-go execution of stateless functions, but its performance characteristics cannot match coarse-grained cloud and cluster allocations. To make serverless computing viable for high-performance and latency-sensitive applications, we present rFaaS, an RDMA-accelerated FaaS platform. We identify critical limitations of serverless - centralized scheduling and inefficient network transport - and improve the FaaS architecture with allocation leases and microsecond invocations. We show that our remote functions add only negligible overhead on top of the fastest available networks, and we decrease the execution latency by orders of magnitude compared to contemporary FaaS systems. Furthermore, we demonstrate the performance of rFaaS by evaluating real-world FaaS benchmarks and parallel applications. Overall, our results show that new allocation policies and remote memory access help FaaS applications achieve high performance and bring serverless computing to HPC.
Quadruped robots are machines intended for challenging and harsh environments. Despite the progress in locomotion strategy, safely recovering from unexpected falls or planned drops is still an open problem. It is further made more difficult when high horizontal velocities are involved. In this work, we propose an optimization-based reactive Landing Controller that uses only proprioceptive measures for torque-controlled quadruped robots that free-fall on a flat horizontal ground, knowing neither the distance to the landing surface nor the flight time. Based on an estimate of the Center of Mass horizontal velocity, the method uses the Variable Height Springy Inverted Pendulum model for continuously recomputing the feet position while the robot is falling. In this way, the quadruped is ready to attain a successful landing in all directions, even in the presence of significant horizontal velocities. The method is demonstrated to dramatically enlarge the region of horizontal velocities that can be dealt with by a naive approach that keeps the feet still during the airborne stage. To the best of our knowledge, this is the first time that a quadruped robot can successfully recover from falls with horizontal velocities up to 3 m/s in simulation. Experiments prove that the used platform, Go1, can successfully attain a stable standing configuration from falls with various horizontal velocity and different angular perturbations.
Recent advances in Transformer architectures [1] have brought remarkable improvements to visual question answering (VQA). Nevertheless, Transformer-based VQA models are usually deep and wide to guarantee good performance, so they can only run on powerful GPU servers and cannot run on capacity-restricted platforms such as mobile phones. Therefore, it is desirable to learn an elastic VQA model that supports adaptive pruning at runtime to meet the efficiency constraints of different platforms. To this end, we present the bilaterally slimmable Transformer (BST), a general framework that can be seamlessly integrated into arbitrary Transformer-based VQA models to train a single model once and obtain various slimmed submodels of different widths and depths. To verify the effectiveness and generality of this method, we integrate the proposed BST framework with three typical Transformer-based VQA approaches, namely MCAN [2], UNITER [3], and CLIP-ViL [4], and conduct extensive experiments on two commonly-used benchmark datasets. In particular, one slimmed MCAN-BST submodel achieves comparable accuracy on VQA-v2, while being 0.38x smaller in model size and having 0.27x fewer FLOPs than the reference MCAN model. The smallest MCAN-BST submodel only has 9M parameters and 0.16G FLOPs during inference, making it possible to deploy it on a mobile device with less than 60 ms latency.
3D spatial perception is the problem of building and maintaining an actionable and persistent representation of the environment in real-time using sensor data and prior knowledge. Despite the fast-paced progress in robot perception, most existing methods either build purely geometric maps (as in traditional SLAM) or flat metric-semantic maps that do not scale to large environments or large dictionaries of semantic labels. The first part of this paper is concerned with representations: we show that scalable representations for spatial perception need to be hierarchical in nature. Hierarchical representations are efficient to store, and lead to layered graphs with small treewidth, which enable provably efficient inference. We then introduce an example of hierarchical representation for indoor environments, namely a 3D scene graph, and discuss its structure and properties. The second part of the paper focuses on algorithms to incrementally construct a 3D scene graph as the robot explores the environment. Our algorithms combine 3D geometry, topology (to cluster the places into rooms), and geometric deep learning (e.g., to classify the type of rooms the robot is moving across). The third part of the paper focuses on algorithms to maintain and correct 3D scene graphs during long-term operation. We propose hierarchical descriptors for loop closure detection and describe how to correct a scene graph in response to loop closures, by solving a 3D scene graph optimization problem. We conclude the paper by combining the proposed perception algorithms into Hydra, a real-time spatial perception system that builds a 3D scene graph from visual-inertial data in real-time. We showcase Hydra's performance in photo-realistic simulations and real data collected by a Clearpath Jackal robots and a Unitree A1 robot. We release an open-source implementation of Hydra at //github.com/MIT-SPARK/Hydra.