亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multistate Markov models are a canonical parametric approach for data modeling of observed or latent stochastic processes supported on a finite state space. Continuous-time Markov processes describe data that are observed irregularly over time, as is often the case in longitudinal medical data, for example. Assuming that a continuous-time Markov process is time-homogeneous, a closed-form likelihood function can be derived from the Kolmogorov forward equations -- a system of differential equations with a well-known matrix-exponential solution. Unfortunately, however, the forward equations do not admit an analytical solution for continuous-time, time-inhomogeneous Markov processes, and so researchers and practitioners often make the simplifying assumption that the process is piecewise time-homogeneous. In this paper, we provide intuitions and illustrations of the potential biases for parameter estimation that may ensue in the more realistic scenario that the piecewise-homogeneous assumption is violated, and we advocate for a solution for likelihood computation in a truly time-inhomogeneous fashion. Particular focus is afforded to the context of multistate Markov models that allow for state label misclassifications, which applies more broadly to hidden Markov models (HMMs), and Bayesian computations bypass the necessity for computationally demanding numerical gradient approximations for obtaining maximum likelihood estimates (MLEs). Supplemental materials are available online.

相關內容

We propose a decoder-only language model, VoxtLM, that can perform four tasks: speech recognition, speech synthesis, text generation, and speech continuation. VoxtLM integrates text vocabulary with discrete speech tokens from self-supervised speech features and uses special tokens to enable multitask learning. Compared to a single-task model, VoxtLM exhibits a significant improvement in speech synthesis, with improvements in both speech intelligibility from 28.9 to 5.6 and objective quality from 2.68 to 3.90. VoxtLM also improves speech generation and speech recognition performance over the single-task counterpart. Further, VoxtLM is trained with publicly available data and training recipes and model checkpoints are open-sourced to make fully reproducible work.

Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC) types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels into constituent LULC types and their abundance fractions. While existing studies on Deep Learning (DL) for SU typically focus on single time-step hyperspectral (HS) or multispectral (MS) data, our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models. Our approach enhances a Long-Short Term Memory (LSTM)-based model by incorporating geographic, topographic (geo-topographic), and climatic ancillary information. Notably, our method eliminates the need for explicit endmember extraction, instead learning the input-output relationship between mixed spectra and LULC abundances through supervised learning. Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels. To facilitate this study, we curated a novel labeled dataset for Andalusia (Spain) with monthly MODIS multispectral time series at 460m resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing (Andalusia-MSMTU), this dataset provides pixel-level annotations of LULC abundances along with ancillary information. The dataset (//zenodo.org/records/7752348) and code (//github.com/jrodriguezortega/MSMTU) are available to the public.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

We propose a new stabilised finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterised by degenerate diffusion. The stabilisation is constructed so that the resulting method admits a \emph{numerical hypocoercivity} property, analogous to the corresponding property of the PDE problem. More specifically, the stabilisation is constructed so that spectral gap is possible in the resulting ``stronger-than-energy'' stabilisation norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behaviour as the ``time'' variable goes to infinity. We consider both a spatially discrete version of the stabilised finite element method and a fully discrete version, with the time discretisation realised by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.

This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.

Many testing problems are readily amenable to randomised tests such as those employing data splitting. However despite their usefulness in principle, randomised tests have obvious drawbacks. Firstly, two analyses of the same dataset may lead to different results. Secondly, the test typically loses power because it does not fully utilise the entire sample. As a remedy to these drawbacks, we study how to combine the test statistics or p-values resulting from multiple random realisations such as through random data splits. We develop rank-transformed subsampling as a general method for delivering large sample inference about the combined statistic or p-value under mild assumptions. We apply our methodology to a wide range of problems, including testing unimodality in high-dimensional data, testing goodness-of-fit of parametric quantile regression models, testing no direct effect in a sequentially randomised trial and calibrating cross-fit double machine learning confidence intervals. In contrast to existing p-value aggregation schemes that can be highly conservative, our method enjoys type-I error control that asymptotically approaches the nominal level. Moreover, compared to using the ordinary subsampling, we show that our rank transform can remove the first-order bias in approximating the null under alternatives and greatly improve power.

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.

Diffusion generative models have achieved remarkable success in generating images with a fixed resolution. However, existing models have limited ability to generalize to different resolutions when training data at those resolutions are not available. Leveraging techniques from operator learning, we present a novel deep-learning architecture, Dual-FNO UNet (DFU), which approximates the score operator by combining both spatial and spectral information at multiple resolutions. Comparisons of DFU to baselines demonstrate its scalability: 1) simultaneously training on multiple resolutions improves FID over training at any single fixed resolution; 2) DFU generalizes beyond its training resolutions, allowing for coherent, high-fidelity generation at higher-resolutions with the same model, i.e. zero-shot super-resolution image-generation; 3) we propose a fine-tuning strategy to further enhance the zero-shot super-resolution image-generation capability of our model, leading to a FID of 11.3 at 1.66 times the maximum training resolution on FFHQ, which no other method can come close to achieving.

We develop qutrit circuit models for discrete-time three-state quantum walks on Cayley graphs corresponding to Dihedral groups $D_N$ and the additive groups of integers modulo any positive integer $N$. The proposed circuits comprise of elementary qutrit gates such as qutrit rotation gates, qutrit-$X$ gates and two-qutrit controlled-$X$ gates. First, we propose qutrit circuit representation of special unitary matrices of order three, and the block diagonal special unitary matrices with $3\times 3$ diagonal blocks, which correspond to multi-controlled $X$ gates and permutations of qutrit Toffoli gates. We show that one-layer qutrit circuit model need $O(3nN)$ two-qutrit control gates and $O(3N)$ one-qutrit rotation gates for these quantum walks when $N=3^n$. Finally, we numerically simulate these circuits to mimic its performance such as time-averaged probability of finding the walker at any vertex on noisy quantum computers. The simulated results for the time-averaged probability distributions for noisy and noiseless walks are further compared using KL-divergence and total variation distance. These results show that noise in gates in the circuits significantly impacts the distributions than amplitude damping or phase damping errors.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

北京阿比特科技有限公司