Recent advancements in diffusion models have greatly improved the quality and diversity of synthesized content. To harness the expressive power of diffusion models, researchers have explored various controllable mechanisms that allow users to intuitively guide the content synthesis process. Although the latest efforts have primarily focused on video synthesis, there has been a lack of effective methods for controlling and describing desired content and motion. In response to this gap, we introduce MCDiff, a conditional diffusion model that generates a video from a starting image frame and a set of strokes, which allow users to specify the intended content and dynamics for synthesis. To tackle the ambiguity of sparse motion inputs and achieve better synthesis quality, MCDiff first utilizes a flow completion model to predict the dense video motion based on the semantic understanding of the video frame and the sparse motion control. Then, the diffusion model synthesizes high-quality future frames to form the output video. We qualitatively and quantitatively show that MCDiff achieves the state-the-of-art visual quality in stroke-guided controllable video synthesis. Additional experiments on MPII Human Pose further exhibit the capability of our model on diverse content and motion synthesis.
We present Viewset Diffusion: a framework for training image-conditioned 3D generative models from 2D data. Image-conditioned 3D generative models allow us to address the inherent ambiguity in single-view 3D reconstruction. Given one image of an object, there is often more than one possible 3D volume that matches the input image, because a single image never captures all sides of an object. Deterministic models are inherently limited to producing one possible reconstruction and therefore make mistakes in ambiguous settings. Modelling distributions of 3D shapes is challenging because 3D ground truth data is often not available. We propose to solve the issue of data availability by training a diffusion model which jointly denoises a multi-view image set.We constrain the output of Viewset Diffusion models to a single 3D volume per image set, guaranteeing consistent geometry. Training is done through reconstruction losses on renderings, allowing training with only three images per object. Our design of architecture and training scheme allows our model to perform 3D generation and generative, ambiguity-aware single-view reconstruction in a feed-forward manner. Project page: szymanowiczs.github.io/viewset-diffusion.
Synthesizing realistic animations of humans, animals, and even imaginary creatures, has long been a goal for artists and computer graphics professionals. Compared to the imaging domain, which is rich with large available datasets, the number of data instances for the motion domain is limited, particularly for the animation of animals and exotic creatures (e.g., dragons), which have unique skeletons and motion patterns. In this work, we present a Single Motion Diffusion Model, dubbed SinMDM, a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize motions of arbitrary length that are faithful to them. We harness the power of diffusion models and present a denoising network explicitly designed for the task of learning from a single input motion. SinMDM is designed to be a lightweight architecture, which avoids overfitting by using a shallow network with local attention layers that narrow the receptive field and encourage motion diversity. SinMDM can be applied in various contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation. Our results show that SinMDM outperforms existing methods both in quality and time-space efficiency. Moreover, while current approaches require additional training for different applications, our work facilitates these applications at inference time. Our code and trained models are available at //sinmdm.github.io/SinMDM-page.
Text-to-image generative models have attracted rising attention for flexible image editing via user-specified descriptions. However, text descriptions alone are not enough to elaborate the details of subjects, often compromising the subjects' identity or requiring additional per-subject fine-tuning. We introduce a new framework called \textit{Paste, Inpaint and Harmonize via Denoising} (PhD), which leverages an exemplar image in addition to text descriptions to specify user intentions. In the pasting step, an off-the-shelf segmentation model is employed to identify a user-specified subject within an exemplar image which is subsequently inserted into a background image to serve as an initialization capturing both scene context and subject identity in one. To guarantee the visual coherence of the generated or edited image, we introduce an inpainting and harmonizing module to guide the pre-trained diffusion model to seamlessly blend the inserted subject into the scene naturally. As we keep the pre-trained diffusion model frozen, we preserve its strong image synthesis ability and text-driven ability, thus achieving high-quality results and flexible editing with diverse texts. In our experiments, we apply PhD to both subject-driven image editing tasks and explore text-driven scene generation given a reference subject. Both quantitative and qualitative comparisons with baseline methods demonstrate that our approach achieves state-of-the-art performance in both tasks. More qualitative results can be found at \url{//sites.google.com/view/phd-demo-page}.
Weakly supervised grounded image captioning (WSGIC) aims to generate the caption and ground (localize) predicted object words in the input image without using bounding box supervision. Recent two-stage solutions mostly apply a bottom-up pipeline: (1) first apply an off-the-shelf object detector to encode the input image into multiple region features; (2) and then leverage a soft-attention mechanism for captioning and grounding. However, object detectors are mainly designed to extract object semantics (i.e., the object category). Besides, they break down the structural images into pieces of individual proposals. As a result, the subsequent grounded captioner is often overfitted to find the correct object words, while overlooking the relation between objects (e.g., what is the person doing?), and selecting incompatible proposal regions for grounding. To address these difficulties, we propose a one-stage weakly supervised grounded captioner that directly takes the RGB image as input to perform captioning and grounding at the top-down image level. In addition, we explicitly inject a relation module into our one-stage framework to encourage the relation understanding through multi-label classification. The relation semantics aid the prediction of relation words in the caption. We observe that the relation words not only assist the grounded captioner in generating a more accurate caption but also improve the grounding performance. We validate the effectiveness of our proposed method on two challenging datasets (Flick30k Entities captioning and MSCOCO captioning). The experimental results demonstrate that our method achieves state-of-the-art grounding performance.
In this paper, we present MovieFactory, a powerful framework to generate cinematic-picture (3072$\times$1280), film-style (multi-scene), and multi-modality (sounding) movies on the demand of natural languages. As the first fully automated movie generation model to the best of our knowledge, our approach empowers users to create captivating movies with smooth transitions using simple text inputs, surpassing existing methods that produce soundless videos limited to a single scene of modest quality. To facilitate this distinctive functionality, we leverage ChatGPT to expand user-provided text into detailed sequential scripts for movie generation. Then we bring scripts to life visually and acoustically through vision generation and audio retrieval. To generate videos, we extend the capabilities of a pretrained text-to-image diffusion model through a two-stage process. Firstly, we employ spatial finetuning to bridge the gap between the pretrained image model and the new video dataset. Subsequently, we introduce temporal learning to capture object motion. In terms of audio, we leverage sophisticated retrieval models to select and align audio elements that correspond to the plot and visual content of the movie. Extensive experiments demonstrate that our MovieFactory produces movies with realistic visuals, diverse scenes, and seamlessly fitting audio, offering users a novel and immersive experience. Generated samples can be found in YouTube or Bilibili (1080P).
We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
Recently, denoising diffusion models have demonstrated remarkable performance among generative models in various domains. However, in the speech domain, the application of diffusion models for synthesizing time-varying audio faces limitations in terms of complexity and controllability, as speech synthesis requires very high-dimensional samples with long-term acoustic features. To alleviate the challenges posed by model complexity in singing voice synthesis, we propose HiddenSinger, a high-quality singing voice synthesis system using a neural audio codec and latent diffusion models. To ensure high-fidelity audio, we introduce an audio autoencoder that can encode audio into an audio codec as a compressed representation and reconstruct the high-fidelity audio from the low-dimensional compressed latent vector. Subsequently, we use the latent diffusion models to sample a latent representation from a musical score. In addition, our proposed model is extended to an unsupervised singing voice learning framework, HiddenSinger-U, to train the model using an unlabeled singing voice dataset. Experimental results demonstrate that our model outperforms previous models in terms of audio quality. Furthermore, the HiddenSinger-U can synthesize high-quality singing voices of speakers trained solely on unlabeled data.
Large-scale generative models are capable of producing high-quality images from detailed text descriptions. However, many aspects of an image are difficult or impossible to convey through text. We introduce self-guidance, a method that provides greater control over generated images by guiding the internal representations of diffusion models. We demonstrate that properties such as the shape, location, and appearance of objects can be extracted from these representations and used to steer sampling. Self-guidance works similarly to classifier guidance, but uses signals present in the pretrained model itself, requiring no additional models or training. We show how a simple set of properties can be composed to perform challenging image manipulations, such as modifying the position or size of objects, merging the appearance of objects in one image with the layout of another, composing objects from many images into one, and more. We also show that self-guidance can be used to edit real images. For results and an interactive demo, see our project page at //dave.ml/selfguidance/
We present Face0, a novel way to instantaneously condition a text-to-image generation model on a face, in sample time, without any optimization procedures such as fine-tuning or inversions. We augment a dataset of annotated images with embeddings of the included faces and train an image generation model, on the augmented dataset. Once trained, our system is practically identical at inference time to the underlying base model, and is therefore able to generate images, given a user-supplied face image and a prompt, in just a couple of seconds. Our method achieves pleasing results, is remarkably simple, extremely fast, and equips the underlying model with new capabilities, like controlling the generated images both via text or via direct manipulation of the input face embeddings. In addition, when using a fixed random vector instead of a face embedding from a user supplied image, our method essentially solves the problem of consistent character generation across images. Finally, while requiring further research, we hope that our method, which decouples the model's textual biases from its biases on faces, might be a step towards some mitigation of biases in future text-to-image models.
Diffusion models have attracted significant attention due to their remarkable ability to create content and generate data for tasks such as image classification. However, the usage of diffusion models to generate high-quality object detection data remains an underexplored area, where not only the image-level perceptual quality but also geometric conditions such as bounding boxes and camera views are essential. Previous studies have utilized either copy-paste synthesis or layout-to-image (L2I) generation with specifically designed modules to encode semantic layouts. In this paper, we propose GeoDiffusion, a simple framework that can flexibly translate various geometric conditions into text prompts and empower the pre-trained text-to-image (T2I) diffusion models for high-quality detection data generation. Unlike previous L2I methods, our GeoDiffusion is able to encode not only bounding boxes but also extra geometric conditions such as camera views in self-driving scenes. Extensive experiments demonstrate GeoDiffusion outperforms previous L2I methods while maintaining 4x training time faster. To the best of our knowledge, this is the first work to adopt diffusion models for layout-to-image generation with geometric conditions and demonstrate that L2I-generated images can be beneficial for improving the performance of object detectors.