亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

毋庸置疑,人工智能(AI)在軍事情報方面的潛在優勢是巨大的。然而,人工智能如何才能準確地加強對軍事數據的分析,這一點仍不確定。本研究旨在解決這一問題。為此,與新創公司 Aleph Alpha 合作開發了人工智能演示器 deepCOM。

人工智能功能包括文本搜索、自動文本摘要和命名實體識別(NER)。對這些功能在軍事分析中的附加值進行了評估。結果表明,在時間壓力下,使用人工智能功能的評估結果明顯優于對照組。然而,盡管實驗組的分析結果明顯優于對照組,但他們對自己分析結果準確性的信心卻沒有增加。最后,本文指出了在軍事情報中使用人工智能的局限性,尤其是在分析模棱兩可和相互矛盾的信息時。

圖 3:上圖: NER 可自動從文本中提取時間、地點、組織和人名。中圖: 文本中識別實體的顏色編碼。下圖: 在地圖上顯示識別出的地點。

當今可觀察到的數據量之大,使軍事情報顯然需要使用人工智能(AI)[10]。然而,使用人工智能的好處以及在軍事分析過程中的哪個環節使用人工智能仍是一個懸而未決的問題[26]。軍事情報的主要作用是收集和分析信息,為軍事領導人做出明智決策提供支持。從學術角度看,軍事情報是一個跨學科的研究領域,涉及政治學、經濟學、社會學和心理學等多個學科[1]。

因此,軍事情報涉及信息的收集和分析,以提供對局勢的全面了解。這可能需要收集有關武裝部隊的數據,研究其他國家的計劃和行動,以及收集有關影響國家安全的事態發展的信息[25]。

可以肯定的是,在分析國外與軍事相關的事態發展時,必須確保使用創新的方式方法,如人工智能(AI)。人工智能的新發展及其與分析和研究軟件的整合為提高分析人員的判斷能力提供了廣泛的支持選項[5]。

預計人工智能技術的使用將減輕分析人員的負擔,使他們能夠專注于分析、評估和展示軍事情報形勢的核心內容[12]。

需要強調的是,分析人員不應被人工智能系統取代,而應得到輔助。特別是,必須確保分析人員始終能夠理解他們進行評估所依據的信息[2]。

作為這項研究的一部分,初創公司 Aleph Alpha 開發了一款專有的人工智能演示程序。這個名為 deepCOM 的程序的功能基于大型語言模型 (LLM)。需要強調的是,deepCOM 并不是一個工作產品,而是一個演示程序。deepCOM 的核心功能是語義搜索。用戶可以直接提問,系統會給出答案,并標明使用的資料來源。此外,deepCOM 還能自動總結數據庫中的每份報告,使分析人員能夠從幾句話的總結中識別相關來源。

系統中還采用了命名實體識別(NER)技術,對所有報告進行全自動標注:如果文本中出現時間、地點、組織和人物,則會從提及的時間、地點、組織和人物中提取標簽,用戶在識別相關來源和閱讀時都會突出顯示這些標簽[8]。

本研究的目標是展示在軍事分析過程中使用人工智能的附加值。以往的研究主要關注人工智能在數據收集中的應用[13],而本研究則側重于人工智能為人類分析和評估提供的支持。如果新技術不能為分析人員及其分析績效帶來直接的附加值,那么為使用新技術而使用新技術是不可取的。

僅從概念上考慮不足以評估價值。為了能夠做出經驗驗證,本研究進行了一次實驗。據我們所知,這是第一項對人工智能在智能方面的附加值進行實證分析的研究。

本研究將采用以下方法來解決這一問題。第 2 節概述了基于情報周期的軍事分析流程。然后,第 3 節介紹了所研究的人工智能功能及其如何為軍事分析人員提供支持。第 4 節解釋了實驗設計,第 5 節介紹了實驗結果。第 6 節討論了實驗結果。最后,第 7 節是結束語。

deepCOM 演示程序中支持軍事情報的人工智能能力

deepCOM 演示程序是一款集成了人工智能功能的分析工具,旨在為軍事分析人員的工作提供支持。下文介紹了實驗分析的人工智能功能。在 deepCOM 中測試的三項人工智能功能中,有兩項是基于大型語言模型(LLM)的,即人工智能搜索和自動摘要。測試的第三個人工智能功能是命名實體識別。盡管由于北約、聯合國和歐盟等國際結構的原因,德國的情報界使用英語工作,但其自身的產品卻是用德語創建的。因此,deepCOM 的用戶界面和輸出均為德語。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

隨著無人機與社會越來越緊密地聯系在一起,更多未經培訓的用戶需要具備操作無人機的能力。要實現這一目標,就必須開發人工智能能力,協助人類操作員控制無人機系統和處理傳感器數據,從而減少對操作員進行大量培訓的需要。本文介紹了 HADRON 項目,該項目旨在開發和測試多種新型技術,以實現對無人機群的人性化控制。該項目分為三個主要部分。第一部分是整合各種技術,實現對無人機的直觀控制,重點關注新手或缺乏經驗的飛行員和操作員。第二部分的重點是開發一個多無人機系統,該系統將由一個指揮和控制站控制,其中一名專家飛行員可以監督多架無人機的操作。項目的第三部分將側重于減少人類操作員的認知負荷,無論他們是新手還是專家飛行員。為此,將開發人工智能工具,協助無人機操作員進行半自動實時數據處理。

HADRON 項目考慮了三個級別的自主性。第一級側重于新手用戶,即使是相當簡單的操作也需要高度輔助,例如通過使用直觀的無人機控制技術。下一個層次涉及專業飛行員,旨在使他們能夠從中央站控制多架無人機系統。最后一個層次旨在通過引入人工智能工具來自動處理實時數據,從而大幅降低操作員的認知負荷。本文介紹了 HADRON 項目的定義,該項目將開發和測試不同的新型技術,以明確哪些技術對未來的無人機駕駛有用。本文介紹了系統架構,并討論了所使用的不同技術的選擇。

圖 1. 描繪了一名下馬士兵使用語音命令操作無人機的情景。無人機探測到目標后會通過語音通知操作員,以便操作員當場做出決定。

鑒于確定的能力差距,確定了三個主題:第一個主題將為未經培訓的用戶開發人性化的無人機控制;第二個主題將為專家用戶開發無人機的多智能體控制;最后,第三個主題將通過開發半自動數據解讀算法來輔助前兩個主題。

付費5元查看完整內容

在這個快節奏的世界里,軍事行動在很大程度上依賴于技術。另一方面,技術的發展速度也比以往任何時候都要快。人工智能(AI)就是這樣一種新興技術,它吸引了許多人的興趣,并正在快速發展。2022 年 Gen-AI 的蓬勃發展為人工智能在民用和國防領域的應用打開了大門。目前,大多數國家都在試圖利用人工智能來推進其軍事和軍事行動。這種技術在軍事領域的完美應用案例--C4ISR--將在未來的戰爭中占得先機。有鑒于此,本期簡報試圖了解人工智能在塑造軍事 C4ISR 系統和行動中可以發揮的作用,并提出可能的建議。

印度軍方人工智能賦能的C4ISR

印度正在對顛覆性軍事技術進行密切研究和持續開發,以實現軍隊現代化。印度越來越重視在這些領域實現國產化,以加強本土國防基礎。為了在人工智能領域創造戰略優勢,印度國防部國防生產局(DDP,MoD)于 2018 年 2 月成立了一個特別工作組,研究人工智能在國防應用中的未來使用。根據 2018 年 6 月 “國家安全與國防人工智能戰略實施 ”特別工作組提出的建議,2019 年成立了國防人工智能委員會(DAIC)和國防人工智能項目機構(DAIPA)。該委員會由國防部長領導,主要成員包括三軍首長、NCSC(國家網絡安全協調員)以及 DRDO 和相關行業的成員。印度已撥出 100 億英鎊的預算用于促進人工智能的發展。

然而,在 2022 年舉行的首屆國防人工智能研討會上發布了 75 項新的人工智能產品/技術之后,人工智能才正式被納入印度武裝部隊的發展。這些產品由印度武裝部隊和國防和安全部隊開發,旨在提高軍事能力、效率、數據分析和領域意識。這些人工智能產品尤其在 C4ISR 領域的應用如下:

  • 指揮與控制: 指揮與控制(C2)是指指揮官的最高權力。涉及 C2 的系統利用各種技術循環執行 OODA(觀察、定位、決策和行動)功能。利用人工智能等新興技術可以幫助指揮官和部隊獲得有價值的見解,并實現快速、大規模決策。人工智能支持的系統可幫助增強領域意識,提供戰術視角并協助地面行動。

  • 通信: 軍用通信系統使用高級加密系統(AES),通常被稱為軍用級加密,具有高度的安全性和可靠性。但僅靠加密無法實現語音到語音的翻譯(口音、清晰度等)。國防部在防務研討會上推出了人工智能語音翻譯(DYSL AI Translator),使軍人之間的交流順暢無縫。同時推出的通信情報(COMINT)系統將識別和攔截音頻數據,用于安全和監視目的。

  • 網絡安全: 互聯網技術的出現對網絡構成了重大威脅。由于數據在 21 世紀已變得至關重要(被視為 “下一個石油”),網絡威脅在當今世界變得越來越普遍。網絡攻擊對國家的 CII(關鍵信息基礎設施)構成了高風險,因為任何人都可以從任何地方發起攻擊。最近發生的 BSOD(藍屏死機)事件讓我們看到了一行代碼中的錯誤是如何在幾秒鐘內破壞經濟的。創建由人工智能驅動的自動模型解決方案有助于更好地分析和評估威脅。

  • 監視和偵察(SR): 印度武裝部隊使用的監視和偵察系統包括雷達系統、衛星系統、無人機、信號情報(SIGINT)、地面監視等。傳統上,這些系統需要人工監控,但人工智能系統可以幫助實現無須人工監控的監視。印度國防部的舉措包括

    • 無人機饋送分析系統,這是一種基于 DL 的目標識別模式;

    • 支持人工智能的 STORM 無人機,可在 GPS 信號缺失的地區進行監視;

    • 基于人工智能的運動檢測和識別系統

  • 情報: 情報是監視和偵察以及其他數據的綜合結果。其目的是提供信息和評估,通過支持決策、軍事規劃、敵方欺騙、識別對手和評估戰斗力來幫助完成任務。由國防部國防生產局發起的 “無人機饋送分析項目 ”是一個目標識別系統,將有助于改進 ISR 任務。

付費5元查看完整內容

人工智能(AI)在增強國防系統能力、革新戰略決策和塑造未來軍事行動格局方面發揮著重要作用。神經符號人工智能是一種新興的方法,它利用并增強了神經網絡和符號推理的優勢。與傳統的人工智能系統相比,這些系統可能更具影響力和靈活性,因此非常適合軍事應用。本文全面探討了神經符號人工智能的不同層面和能力,旨在闡明其在軍事領域的潛在應用。我們研究了它在改進決策、自動進行復雜情報分析和加強自主系統方面的能力。除了在軍事領域的應用外,我們還進一步探討了它在解決各領域復雜任務方面的潛力。通過這種探索,我們解決了對神經符號人工智能在軍事和民用領域的開發和部署至關重要的倫理、戰略和技術問題。本研究是對神經符號人工智能廣泛可能性的全面探索,為日益增多的研究做出了貢獻。

神經符號人工智能將推動未來的人工智能戰場,徹底改變戰爭。在軍事決策過程中利用人工智能可以提高戰場效率,改善關鍵作戰決策的質量。神經網絡與符號推理的結合有可能顯著提高威脅探測的準確性,并實現更快、更精確的戰術決策,從而徹底改變軍事行動。本文分析透徹,為關注人工智能在戰爭中的未來的研究人員、從業人員和軍事決策者提供了寶貴的見解。通過對現有研究的批判性審視,確定了關鍵挑戰,并概述了未來有希望的發展方向。這旨在進一步增強神經符號人工智能在優化后勤、增強態勢感知和動態決策等領域的負責任部署。此外,神經符號人工智能在軍事應用方面取得的進步也為其在醫療保健、金融和交通等民用領域的廣泛應用帶來了巨大潛力。這種方法提高了不確定性條件下的適應性、可解釋性和推理能力,徹底改變了傳統方法,推動了軍事和民用效能的發展。

貢獻。本文對神經符號人工智能領域做出了以下重要貢獻。

  • 本研究全面探索了神經符號 AI 在軍事應用方面的廣泛可能性,為不斷增長的研究成果做出了貢獻。
  • 強調了神經符號人工智能在軍事行動中的變革潛力,突出了它在加強國家安全和提高行動效率方面的作用。通過全面分析其應用和影響,我們強調了將神經符號人工智能融入軍事戰略和決策過程的重要意義。
  • 全面論述了在軍事環境中開發和部署神經符號人工智能所必須考慮的倫理、戰略和技術因素。
  • 最后,本文概述了在動態和復雜情況下將神經符號人工智能融入軍事行動的戰略意義,強調了神經符號人工智能如何能夠重新定義戰略、提高行動效率并促進國家安全。

圖 6:神經符號人工智能的一些主要軍事應用。

付費5元查看完整內容

本文介紹了一種為戰場環境量身定制的動態三維場景感知創新系統,該系統利用配備雙目視覺和慣性測量單元(IMU)的無人智能體。該系統處理雙目視頻流和 IMU 數據,部署先進的深度學習技術,包括實例分割和密集光流預測,并通過專門策劃的目標數據集加以輔助。通過集成 ResNet101+FPN 骨干進行模型訓練,作戰單元類型識別準確率達到 91.8%,平均交叉比聯合(mIoU)為 0.808,平均精度(mAP)為 0.6064。動態場景定位和感知模塊利用這些深度學習輸出來完善姿態估計,并通過克服通常與 SLAM 方法相關的環境復雜性和運動引起的誤差來提高定位精度。

在模擬戰場元環境中進行的應用測試表明,與傳統的 ORB-SLAM2 立體方法相比,自定位精度提高了 44.2%。該系統能有效地跟蹤和注釋動態和靜態戰場元素,并利用智能體姿勢和目標移動的精確數據不斷更新全局地圖。這項工作不僅解決了戰場場景中的動態復雜性和潛在信息丟失問題,還為未來增強網絡能力和環境重建方法奠定了基礎框架。未來的發展將側重于作戰單元模型的精確識別、多代理協作以及三維場景感知的應用,以推進聯合作戰場景中的實時決策和戰術規劃。這種方法在豐富戰場元宇宙、促進深度人機交互和指導實際軍事應用方面具有巨大潛力。

付費5元查看完整內容

多年來,人工智能一直被用于改進信號情報的收集和分析,但本文探討了生成式人工智能可為戰略情報分析人員執行的一系列任務。文章認為,將生成式人工智能融入情報評估的最穩妥做法是作為人類分析師的 “副駕駛員”。盡管存在不準確、輸入偏差和 “幻覺 ”等問題,但生成式人工智能可以解放時間不足的分析人員,讓他們專注于人類最有價值的任務--運用他們的專業知識、隱性知識和 “現實感”。

人工智能(AI)是無法回避的。我們每個人每天都直接或間接地與它打交道。除了柯潔在圍棋比賽中輸給谷歌的 AlphaGo 這樣的偶然拐點之外,人工智能幾乎沒有大張旗鼓地滲入社會。但現在,圍繞人工智能的爭論非常突出。這主要與用戶友好型生成式人工智能軟件的發布和廣泛采用有關,其中最著名的是 ChatGPT 和 Google Bard。這些功能強大的程序潛力巨大,許多評論家認為它們的影響堪比另一場工業革命。的確,將人工智能應用到各個領域,尤其是醫學領域,可能會帶來革命性的變化;但同樣,它也會帶來巨大的潛在風險--安全、經濟、社會和文化風險。首相蘇納克(Rishi Sunak)希望英國能掌握這個等式的兩面:在人工智能監管和安全方面引領世界,11 月在布萊切利公園舉行的人工智能安全峰會就是一個標志;同時也要抓住這項技術帶來的機遇。八十年前,布萊切利公園的前主人--密碼破譯員、語言學家、數學家和工程師--曾與英格瑪機器搏斗并開創了計算技術的先河。本文關注的是生成式人工智能為他們在情報界的繼承者,特別是那些專注于情報評估技術的繼承者帶來的機遇和挑戰。文章認為,生成式人工智能有可能極大地補充分析工作。但就目前而言,它最有用的應用是作為輔助工具、副駕駛員,它有可能極大地增強分析人員的工作,但也應謹慎使用。

情報與技術是一對老朋友。幾十年來,它們彼此推動著對方的發展。這一點在電子和計算機領域體現得最為明顯。在秘密行動中,情報機構推動了技術的發展。它們還經常是新技術的早期采用者,利用新技術開發、維護和增強能力。畢竟,適應性是成功情報機構的標志之一。英國皇家情報總部成功地從模擬機構轉型為數字機構,如今甚至將自己定位為 “情報、安全和網絡機構”。人工智能已經以多種方式補充了情報工作。各國經常使用人工智能增強系統來協助收集情報。許多在秘密領域工作的私營部門承包商也在人工智能領域大顯身手。由人工智能軟件支持的閉路電視攝像網絡被廣泛用于識別和追蹤城市環境或恐怖風險較高地區(如火車站)的個人或物體。這種技術也為專制政府提供了無與倫比的機會來壓制不同意見或異議,新疆和其他地方的情況就說明了這一點。除數據收集外,這項活動的大部分內容還涉及更輕松、更高效地對數據進行鑒別或選擇,從而為時間有限的分析人員的工作提供便利,因為他們需要評估這些數據的含義。人工智能被廣泛應用于翻譯、將截獲的互聯網流量減少到可控水平、語音識別或在開放的互聯網上搜索對象的協會和聯系人等費力的任務。在英國,INDEX 系統允許分析人員在政府和外部報告中進行搜索。核心信息可以通過自然語言處理系統提取和匯總。但是,正如剛剛退休的英國聯合情報委員會主席西蒙-加斯(Simon Gass)爵士在今年 6 月指出的,“我們正處在這個階段的山腳下”。

需要將生成式人工智能和大型語言模型(LLM)整合到情報評估的正常業務中。簡單地說,生成式人工智能是指 “能夠根據訓練數據生成高質量文本、圖像和其他內容的深度學習模型”。這些技術已經在國防和情報領域受到高度重視。英國國防部國防創新總監約翰-里奇(John Ridge)最近指出,“我們可以肯定的一點是,這類能力將是絕對關鍵的”。這些能力是革命性的,還是只是情報工作的另一個發展階段,還有待觀察。但它們改變商業模式的潛力是顯而易見的。前幾代人工智能主要集中在更有效地收集數據和更有效地整理擺在民間和軍事情報分析師面前的材料上,而生成式人工智能則展示了承擔迄今為止只有人類分析師才能完成的任務的潛力。基于 LLM 的工具(如 ChatGPT)的主要賣點是,它們可以對問題或命令形式的提示做出響應,并利用現有材料在特定參數范圍內做出響應。或者換一種說法,可以命令它們按照特定規格撰寫類似人類的報告,以計算機的速度,根據大量數據提出見解或作出推論。

從這個意義上說,情報分析和評估與其他以研究為基礎的工作領域處于類似的地位,它們可能(而且幾乎肯定會)受到干擾。這些領域包括醫療和法律行業,在這些行業中,根據有關特定主題的全部數字化文獻資料快速、清晰地編寫報告或文件的前景非常誘人。教育領域也受到了影響,其傳統模式正在被檢測機器生成的作品這一挑戰以及人工智能時代究竟什么才是合法研究這一更具哲學意義的問題所顛覆。盡管如此,在這些領域中的每一個領域,理論上都可以在很大程度上將曾經由人類完成的基本任務外包給機器,盡管需要保持謹慎的警惕。這樣做已經產生了令人印象深刻、有時甚至發人深省的成果,比如一篇關于 ChatGPT 對檢測剽竊行為的影響的學術論文,該論文已提交給同行評審的學術期刊,并被其接受,但這篇論文是用 ChatGPT “寫 ”出來的。不過,如果從各行各業廣泛采用 LLM 的軼事證據來看,人類分析師的日子還遠未到頭。在不久的將來,應將 LLMs 視為情報分析員的額外工具,是提高效率和效力的輔助工具。他們是 “副駕駛員”,可以評估論點、進行數據分析或校對,而不是潛在的替代者。就目前而言,在這些領域中的任何一個領域,要想以其他方式開展工作,風險都太大了。情報工作也不例外:在全球競爭的環境中,整合這些工具的必要性只會越來越強,但過快或魯莽行事顯然存在風險。審慎的做法是,情報評估機構利用人工智能增強人類分析師的能力,為他們創造更多的時間和空間,讓他們運用不可或缺的隱性知識和 “現實感”--以賽亞-伯林(Isaiah Berlin)所說的感同身受的理解是歷史解釋的一個關鍵特征--來理解全局。

令人欣慰的是,谷歌Bard也同意這一點。當被問及它能為情報分析帶來哪些好處時,該程序回答說,它可以執行許多有用的任務。這些任務包括收集信息、分析信息、生成報告、交流研究結果、提出情報需求、管理情報資源和監督情報行動,以確保它們符合法律和道德標準。但是,當被要求確定使用 LLMs 進行戰略情報分析的風險時,它指出:"重要的是,要將機器的產出與情報分析結合起來: 重要的是要將機器輸出與人工分析和解釋以及對地緣政治環境的全面了解結合起來"。顯然,如果 “言聽計從”,該系統具有巨大的潛力。但在充分挖掘潛力之前,所有相關人員都需要考慮并解決幾個基本挑戰。

這些問題包括通常對 IT 網絡安全性和穩健性的擔憂,例如:確保集成軟件經過安全架構審查所面臨的挑戰、供應鏈風險的可能性、數據存儲的安全性、確保提交給任何系統的查詢都經過加密或不可能被敵方重建。其他值得注意的安全問題來自于大量的訓練數據、數十億個參數以及設計可行工具所需的訓練過程。目前,這項工作是在基于云的系統中進行的,因此除了常見的網絡安全問題外,還增加了數據主權問題。此外,為了最大限度地發揮其價值和效用,特別是在快速發展的情況下,LLM 需要經常或持續訪問互聯網。顯然,有必要將那些與開放互聯網保持聯系的系統與情報分析員處理更敏感材料和制作情報評估產品的封閉、保密網絡分開。

上述問題都不是不可克服的,但這些挑戰突出表明,必須有條不紊地解決這一問題,協調政府各相關機構利益攸關方,以成功實施這一至關重要的信息技術項目。這些挑戰也并不都集中在如何確保系統不被敵對勢力破壞上。還需要考慮監管問題。事實上,大衛-安德森(David Anderson)勛爵在上議院關于人工智能的辯論中指出,"在一個人人都在使用開源數據集來訓練大型語言模型的世界里,英國信息中心受到了《調查權力法》第 7 部分的獨特限制。這些限制'在某些重要情況下影響了英國信息中心的靈活性,影響了它與商業伙伴的合作,影響了它招聘和留住數據科學家的能力,并最終影響了它的效率'。

只要能找到令人滿意的解決方案,LLM 對分析師工作的許多方面都極為有用。其中包括較為傳統但費力的任務,如作為研究助理,就特定主題(如國際爭端的背景)提供近乎即時的不同長度和細節的摘要,或構建時間軸、撰寫簡介、總結或分析冗長的文本,或(假設版權和訂閱問題得到解決)將最新的學術著作納入其中。雖然第一批LLM是在英語語料庫中接受培訓的,但目前開發多語言模型的工作進展順利。當然,鑒于已發現生成式人工智能生成的回復在準確性和完整性方面存在問題,任何此類產品都必須經過主題專家的檢查,類似于跨白廳當前情報小組系統。這可能會提高穩健性和效率,并隨著時間的推移,促進機構學習和流程改革。

但潛力顯然不止于此。生成式人工智能還可以包括更先進、更重要的工作。例如,分析師可以使用 LLM 來審查和驗證他們的書面報告,從而增強現有的分析流程和產品審計程序。例如,可以要求提供任何對關鍵判斷提出質疑或證偽的數據;查詢長期以來生成的報告,以確定已成為傳統智慧的假設;或使用工具生成 “紅隊 ”評估。從理論上講,這種能力可以在幾個方面幫助分析人員識別或根除導致情報失敗的某些偏見因素,并確保報告盡可能是最新的。不難想象,這些工具的提供和適當使用將如何提高分析界的速度、影響范圍和批判性地反思其行為和業績的能力。

目前這一代 LLM 也可以撰寫報告或評估報告。將此類寫作任務的早期起草階段外包給一個工具,可為資源和時間貧乏的情報分析員創造經濟效益。毫無疑問,謹慎采用 LLM 是有道理的。但這項技術仍然有限,需要認真監測。這些局限性帶來了風險,這一點在 2023 年大眾廣泛嘗試使用 LLM 之后已經得到證明和充分記錄(在 META 推出 Threads 之前,沒有任何應用能像 ChatGPT 那樣迅速得到采用,該應用在推出后五天內用戶就達到了 100 萬)。對于情報分析師及其產品的接收者來說,其中許多挑戰都是非常棘手的。其中包括對這些工具所提供信息的準確性和可靠性的擔憂。這些系統非常善于生成似是而非的文本、聲明和結論。但這些可能在現實中沒有任何依據,甚至在建立 LLM 的訓練數據中也沒有任何依據。這種 “幻覺 ”已被廣泛觀察到;在學術工作中,經常出現的 “幻覺 ”是生成不存在的資料來源(例如,引用聽起來很有道理但實際上并不存在的網頁)來支持生成的主張。這究竟是 LLM 的一個特點還是一個缺陷,還存在爭議。無論如何,這都對采用 LLM 進行情報評估構成了重大挑戰。分析人員從這些工具中獲取材料并將其納入分析產品時,必須對基礎源數據進行系統檢查。因此,這項技術提出了一個悖論:一是節省時間,二是增加工作量。

與其他人工智能系統一樣,LLM 也會在其生成的任何內容中嵌入偏見。該系統的吸引力和潛力在于它有能力攝取和查詢大量資料--基本上是整個開放互聯網--但必然結果是,該系統也會攝取現有的偏見和廢話,這些偏見和廢話可能是關于特定主題的主流敘事,或者是關于特定主題的特定語言。同樣,毫無疑問,破壞性或惡意行為者會利用 LLM 快速、廉價地生成大量虛假信息并充斥網絡。毫無疑問,敵對行為者也會試圖毒害公共或專有 LLM。目前,大多數開放的生成式人工智能應用程序本質上都是黑盒子,這些系統不允許(或不會允許)用戶檢查它們得出特定判斷的過程。這是由于神經網絡依賴多層節點處理數據的本質所致。這種可觀察性的缺乏,再加上基于 LLM 的系統在可復制性方面的某種脆性--即它對準確提示措辭的依賴--帶來了風險和挑戰。事實上,鑒于在專業情報界對分析評估采用可審計程序的重要性,在這些工具被納入正常業務之前,這個問題構成了一個需要克服的重大障礙--或者說需要掌握的挑戰。正如在人工智能之前的時代一樣,結論必然需要由經驗豐富、訓練有素的人員進行檢查、驗證和整個過程的審計。

這些風險有可能被充分降低,使這些工具能夠相對迅速地融入分析流程。許多研究人員正在開發人工智能系統,以識別人工智能在各種情況下生成的內容,如學術論文或視頻文件。還有一些研究人員正在研究可審計的 LLM 系統;還有一些研究人員正在研究如何開發安全的系統,讓分析人員能夠在分類系統和開放的互聯網上進行搜索。但是,即使這些問題可以得到緩解,還有另一個根本性的問題,即這些系統是否只能是衍生系統,因為它們基本上完全建立在基于已有材料的計算模型之上。它們所提供的洞察力能否與任何接近 “想象力 ”的東西相匹配,還是說它們目前的貢獻仍將局限于語法和風格的練習,偶爾會出現幻覺?或者,換一種說法,他們可能會對某個問題進行極其(或表面上)合理的討論,但鑒于這些討論是根據一個統計模型得出的,該模型關注的是某個特定的詞或概念或 “標記 ”與另一個詞或概念或 “標記 ”相聯系的可能性,并以訓練材料為基礎,那么討論結果中是否會存在固有的保守主義或其他偏見?盡管如此,該領域的變化速度之快,即使預測其對情報評估的相對近期影響也充滿了不確定性,突出表明需要不斷審查該領域的發展。

雖然其他類型人工智能的貢獻已經得到證實,但對生成型人工智能的前景過于技術樂觀也會帶來風險。雖然這不是一個精確的類比,但美國情報界在 9/11 事件之前忽視人類情報(HUMINT)技能而青睞高科技的做法,應該為任何想把 LLM 的出現視為減少情報界人力的機會的人提供一個警示。選擇不當的捷徑會造成長期延誤。顯然,政府必須也必須與 LLM 打交道,必須不斷審查現有技術的效用,并愿意在這些系統得到驗證后擴大其使用范圍。但是,除了投資(擁有或使用)LLM,政府還應保留并加倍投資于人。在采用 LLM 的過程中,最大限度地提高效益和降低風險的一個關鍵因素將需要包括保持和發展對情報分析師的培訓,使他們能夠最好地利用這些強大的新工具。這可能包括專業途徑,培養一批善于將生成式人工智能融入分析實踐 “新常態 ”的官員,使他們能夠掌握現有系統,最大限度地發揮其效用,同時將其帶來的風險降至最低。但同時也應保持并優先培養主題和分析技術方面的專家,他們可以用經驗和智慧、隱性知識和人類特有的 “現實感 ”來補充生成式人工智能的巨大威力。在開展這項工作的同時,還應在政府內部(更不用說更廣泛的公眾)開展更廣泛的教育計劃,讓他們了解人工智能的用途和局限性。消費者,尤其是自詡為技術狂熱者和有遠見的 “深層國家 ”或 “小集團 ”的破壞者,應該仔細了解由于 LLM 的便利而繞過其分析機制的局限性和風險。世界不需要唐納德-拉姆斯菲爾德(Donald Rumsfeld)在伊拉克戰爭前的 “特別計劃辦公室”(ChatGPT)。就目前而言,將 LLM 衍生工具整合到分析流程中最合理的使用案例是,由經驗豐富、訓練有素的人類分析師作為 “副駕駛員”,嵌入到仍然樂于向消費者提供不受歡迎的消息的組織中。

付費5元查看完整內容

本研究論文介紹了軍用無人機系統盒(The NeuronDrone-Box)中用于攻擊或防御決策的全自主人工智能:硬件、算法和一種新型專用軍用無人機或無人機。第一部分介紹了軍用無人機系統盒(The NeuronDrone-Box)中的攻擊或防御決策全自主人工智能,以適應任何無人機的主控系統。第二部分是使用混沌理論和經濟地理學的算法。第三部分介紹了被稱為 "黑色噩夢 V.7" 的開創性原型機。黑色噩夢 V.7 無人機投彈手擁有一系列與眾不同的功能和應用,本技術報告將對此進行詳細介紹。首先,主張在軍用無人機系統箱(The NeuronDrone-Box)中實施全自主人工智能攻防決策,以控制與全自主人工智能攻防決策軍用無人機系統箱(The NeuronDrone-Box)相連的多副翼系統(MAS)和多導彈系統(MM-System)。

付費5元查看完整內容

生成式人工智能模型能夠執行一系列傳統上需要創造力和人類理解力的任務。在訓練過程中,它們可以從現有數據中學習模式,然后根據這些模式生成文本、圖像和音樂等新內容。一方面,由于它們的多功能性和普遍的高質量結果,它們代表了數字化的機遇。另一方面,人工智能生成模型的使用也帶來了新的 IT 安全風險,在全面分析與 IT 安全相關的威脅時需要考慮這些風險。

針對這種潛在風險,使用生成式人工智能的公司或機構在將生成式人工智能集成到工作流程之前,應進行單獨的風險分析。這同樣適用于開發人員和運營商,因為生成式人工智能的許多風險必須在開發時就考慮到,或者只能由運營公司來影響。在此基礎上,可以調整現有的安全措施,并采取額外的措施。

付費5元查看完整內容

為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。

RELEGS:針對復雜作戰情況的強化學習

為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。

標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。

為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。

為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。

一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。

視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。

動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。

除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。

付費5元查看完整內容

有效決策是組織成功的核心。在數字化轉型時代,企業越來越多地采用數據驅動的方法來獲得競爭優勢。根據現有文獻,人工智能(AI)代表了這一領域的重大進步,它能夠分析大量數據、識別模式、做出準確預測,并為組織提供決策支持。本研究旨在探討人工智能技術對組織決策不同層面的影響。通過將這些決策按照其屬性分為戰略決策和運營決策,本研究可以更全面地了解人工智能在組織決策中實施的可行性、當前采用率以及阻礙因素。

付費5元查看完整內容

在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。

在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。

本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。

付費5元查看完整內容
北京阿比特科技有限公司